

python-ldap-faker

Current version is 1.1.0.

This package provides a fake python-ldap interface that can be used for
automated testing of code that uses python-ldap. With python-ldap-faker
you will be able to test your LDAP code without having to stand up an actual
LDAP server, and also without having to use complicated
unittest.mock.patch [https://docs.python.org/3/library/unittest.mock.html#unittest.mock.patch] and unittest.mock.Mock [https://docs.python.org/3/library/unittest.mock.html#unittest.mock.Mock] setups.

When writing tests for code that talks to an LDAP server with python-ldap, we
want to be able to control python-ldap interactions in our tests to ensure
that our own code works properly. This may include populating the LDAP server
with fixture data, monitoring if, when and how python-ldap calls are made by
our code, and ensuring our code handles python-ldap exceptions properly.

Managing an actual LDAP server during our tests is usually out of the question,
so typically we revert to patching the python-ldap code to use mock objects
instead, but this is very verbose and can lead to test code errors in practice.

This package provides replacement ldap.initialize [https://www.python-ldap.org/en/latest/reference/ldap.html#ldap.initialize],
ldap.set_option [https://www.python-ldap.org/en/latest/reference/ldap.html#ldap.set_option] and ldap.get_option [https://www.python-ldap.org/en/latest/reference/ldap.html#ldap.get_option] functions, as well as
a test-instrumented ldap.ldap.ldapobject.LDAPObject [https://www.python-ldap.org/en/latest/reference/ldap.html#ldap.ldap.ldapobject.LDAPObject] replacement.

Installation

To install from PyPI:

pip install python-ldap-faker

If you want, you can run the tests:

python -m unittest discover

Features:

	These python-ldap global functions are faked:

	ldap.initialize

	ldap.set_option

	ldap.get_option

	These ldap.ldapobject.LDAPObject methods are faked:

	set_option

	get_option

	start_tls_s

	simple_bind_s

	unbind_s

	search_s

	search_ext

	result3

	compare_s

	add_s

	modify_s

	rename_s

	delete_s

	For search_ext and search_s, your filter string will be validated as a
valid LDAP filter, and your filter will be applied directly to your objects in
our fake “server” to generate the result list. No canned searches!

	Inspect your call history for all calls (name, arguments), and test the order
in which they were made

	Simulate multiple fake LDAP “servers” with different sets of objects that
correspond to different LDAP URIs.

	Ease your test setup with LDAPFakerMixin, a mixin for
unittest.TestCase [https://docs.python.org/3/library/unittest.html#unittest.TestCase]

	Automatically manages patching python-ldap for the code under test

	Populate objects into one or more LDAP “servers” with fixture files

	Provides the following test instrumentation for inspecting state after the test:

	Access to the full object store for each LDAP uri accessed

	All connections made

	All python-ldap API calls made

	All python-ldap LDAP options set

	Provides test isolation: object store changes, connections, call history,
option changes are all reset between tests

	Use handy LDAP specific asserts to ease your testing

	Define your own hooks to change the behavior of your fake “servers”

	Support behavior for specific LDAP implementations:

	Redhat Directory Server/389 implementation support: have your test believe
it’s talking to an RHDS/389 server.

Quickstart

The easiest way to use python-ldap-faker in your unittest [https://docs.python.org/3/library/unittest.html#module-unittest] based
tests is to use the LDAPFakerMixin mixin for
unittest.TestCase [https://docs.python.org/3/library/unittest.html#unittest.TestCase].

This will patch ldap.initialize [https://www.python-ldap.org/en/latest/reference/ldap.html#ldap.initialize], ldap.set_option [https://www.python-ldap.org/en/latest/reference/ldap.html#ldap.set_option] and
ldap.get_option [https://www.python-ldap.org/en/latest/reference/ldap.html#ldap.get_option] to use our FakeLDAP interface, and load
fixtures in from JSON files to use as test data.

Let’s say we have a class App in our myapp module that does LDAP work
that we want to test.

First, prepare a file named data.json with the objects you want loaded into
your fake LDAP server. Let’s say you want your data to consist of some
posixAccount objects. If we make data.json look like this:

[
 [
 "uid=foo,ou=bar,o=baz,c=country",
 {
 "uid": ["foo"],
 "cn": ["Foo Bar"],
 "uidNumber": ["123"],
 "gidNumber": ["123"],
 "homeDirectory": ["/home/foo"],
 "userPassword": ["the password"],
 "objectclass": [
 "posixAccount",
 "top"
]
 }
],
 [
 "uid=fred,ou=bar,o=baz,c=country",
 {
 "uid": ["fred"],
 "cn": ["Fred Flintstone"],
 "uidNumber": ["124"],
 "gidNumber": ["124"],
 "homeDirectory": ["/home/fred"],
 "userPassword": ["the fredpassword"],
 "objectclass": [
 "posixAccount",
 "top"
]
 }
],
 [
 "uid=barney,ou=bar,o=baz,c=country",
 {
 "uid": ["barney"],
 "cn": ["Barney Rubble"],
 "uidNumber": ["125"],
 "gidNumber": ["125"],
 "homeDirectory": ["/home/barney"],
 "userPassword": ["the barneypassword"],
 "objectclass": [
 "posixAccount",
 "top"
]
 }
]
]

We can write our TestCase like so:

import unittest

import ldap
from ldap_faker import LDAPFakerMixin

from myapp import App

class YourTestCase(LDAPFakerMixin, unittest.TestCase):

 ldap_modules = ['myapp']
 ldap_fixtures = 'data.json'

 def test_auth_works(self):
 app = App()
 # A method that does a `simple_bind_s`
 app.auth('fred', 'the fredpassword')
 conn = self.get_connections()[0]
 self.assertLDAPConnectionMethodCalled(
 conn, 'simple_bind_s',
 {'who': 'uid=fred,ou=bar,o=baz,c=country', 'cred': 'the fredpassword'}
)

 def test_correct_connection_options_were_set(self):
 app = App()
 app.auth('fred', 'the fredpassword')
 conn = self.get_connections()[0]
 self.assertLDAPConnectionOptionSet(conn, ldap.OPT_X_TLX_NEWCTX, 0)

 def test_tls_was_used_before_auth(self):
 app = App()
 app.auth('fred', 'the fredpassword')
 conn = self.get_connections()[0]
 self.assertLDAPConnectiontMethodCalled(conn, 'start_tls_s')
 self.assertLDAPConnectionMethodCalledAfter(conn, 'simple_bind_s', 'start_tls_s')

	Faking LDAP servers
	Structure of LDAP records

	LDAPServerFactory

	ObjectStore

	Specific LDAP implementations supported
	Redhat Directory Server/389

	Authentication and Authorization
	Authorization within python-ldap-faker

	Anonymous binds

	Authenticated binds

	Using ldap_faker with unittest
	Configuring your LDAPFakerMixin TestCase

	Test isolation

	Test support offered by LDAPFakerMixin

	Hooks: modifying ObjectStore behavior
	Registering hooks

	Tagged hooks

	Available hooks

	Developer Interface
	Unittest Support

	python-ldap replacements

	LDAP Server like objects

	Hook management

	Type Aliases

Faking LDAP servers

python-ldap-faker stores all LDAP objects in a fake LDAP “server”
class: ObjectStore, and all our fake python-ldap methods
operate on the LDAP objects in that object store via the exposed methods
on ObjectStore.

You won’t typically use ObjectStore directly, but instead you’ll use
LDAPServerFactory to register ObjectStore objects to
correspond to specific LDAP URIs (e.g. ldap://server.example.com). Our
main fake python-ldap interface class FakeLDAP uses the
LDAPServerFactory to assign the correct ObjectStore when
FakeLDAP.initialize is called by our code under test.

Structure of LDAP records

python-ldap-faker tries to pretend it is python-ldap as much as
possible. Important to this is to mimic how python-ldap and LDAP servers
represent LDAP objects.

LDAP objects have these characteristics:

	The primary key for an LDAP object is the dn. The dn is
case-insensitive in all python-ldap methods. For example, these
two statements should operate on the same object:

ldap_obj.simple_bind_s("uid=foo,ou=bar,o=baz,c=country", "the password")
ldap_obj.simple_bind_s("UID=FOO,OU=BAR,O=BAZ,C=COUNTRY", "the password")

	Simliarly, basedn, wherever required, is case-insensitive.

	When doing searches (search_s, search_ext), LDAP object attributes
and values are compared case-insensitively. These searches should all return
the same set of objects:

ldap_obj.search_s("ou=bar,o=baz,c=country", ldap.SCOPE_SUBTREE, '(uid=bar)')
ldap_obj.search_s("ou=bar,o=baz,c=country", ldap.SCOPE_SUBTREE, '(UID=bar)')
ldap_obj.search_s("ou=bar,o=baz,c=country", ldap.SCOPE_SUBTREE, '(uid=bAr)')

	LDAP objects returned by ldap.search_s have this type:
Tuple[str, Dict[str, List[bytes]]. and this structure:

('the dn', {'attribute1': [b'value1', b'value2'], ...})

LDAPServerFactory

LDAPServerFactory objects allow you to register
ObjectStore bound to particular LDAP URIs so that when someone uses
our FakeLDAP.initialize method, it gets properly instrumented with a
copy of the ObjectStore from the LDAPServerFactory.
FakeLDAP takes a fully loaded LDAPServerFactory object
as a constructor object.

Note

Note that we said a copy of the ObjectStore. Since the primary use of
python-ldap-faker is in testing, and we want to ensure good test
isolation, we should start each test with a fresh copy of original
ObjectStore data for our LDAP URI so that we can ensure that any
modifications to that data came only from our code under test.

ObjectStore

The core of python-ldap-faker is the ObjectStore class. This
behaves as the LDAP “server” with which our fake python-ldap interface
interacts. In order to do meaningful work with it, it needs to be loaded with
LDAP objects. There are three methods on ObjectStore that
you can use to load your objects:

	ObjectStore.register_object: load a single object into the object store

	ObjectStore.register_objects: load a list of objects into the object store

	ObjectStore.load_objects: load a list of objects from a JSON file into the object store

Once loaded into ObjectStore, we make a fully case-insensitive
internal-only copy of the object (stored in ObjectStore.objects for
use in executing searches, but the data returned will be the case-sensitive
versions of those objects (the case-sensitive versions are stored in
ObjectStore.raw_objects).

Data Types for ObjectStore.register_object(s)

Each object loaded into ObjectStore.register_object or
ObjectStore.register_objects must be of this type:

	
ldap_faker.types.LDAPRecord

	The central part of internal API.

This represents a generic version of type ‘origin’ with type arguments ‘params’.
There are two kind of these aliases: user defined and special. The special ones
are wrappers around builtin collections and ABCs in collections.abc. These must
have ‘name’ always set. If ‘inst’ is False, then the alias can’t be instantiated,
this is used by e.g. typing.List and typing.Dict.

alias of Tuple[str [https://docs.python.org/3/library/stdtypes.html#str], Dict [https://docs.python.org/3/library/typing.html#typing.Dict][str [https://docs.python.org/3/library/stdtypes.html#str], List [https://docs.python.org/3/library/typing.html#typing.List][bytes [https://docs.python.org/3/library/stdtypes.html#bytes]]]]

Example:

(
 'uid=user,ou=mydept,o=myorg,c=country',
 {
 'cn': [b'Firstname User1'],
 'uid': [b'user'],
 'uidNumber': [b'123'],
 'gidNumber': [b'456'],
 'homeDirectory': [b'/home/user'],
 'loginShell': [b'/bin/bash'],
 'userPassword': [b'the password'],
 'objectclass': [b'posixAccount', b'top']
 }
)

Thus:

	dn is a str

	Attribute names are str

	Attribute values are List[bytes]

File format for ObjectStore.load_objects

Unfortunately, JSON has neither a Tuple type nor a bytes type, so we
need to use lists and strings instead, and convert them to the appropriate types
after reading the JSON file. Thus in our JSON files, we must provide our data
as List[List[str, Dict[str, List[str]]]] instead. Example:

[
 [
 'uid=foo,ou=bar,o=baz,c=country',
 {
 "uid": ["foo"],
 "cn": ["Foo Bar"],
 "uidNumer": ["123"],
 "gidNumer": ["123"],
 "homeDirectory": ["/home/foo"],
 "userPassword": ["the password"],
 "ojectclass": [
 "posixAccount",
 "top"
]
 }
]
]

If you structure your file of LDAP objects like that, and pass in the filename
to ObjectStore, we’ll load the data from the file and convert that
struct to List[Tuple[str, List[bytes]]] before using the result with
ObjectStore.register_objects.`

Specific LDAP implementations supported

Out of the box, our “server” class ObjectStore supports searching,
adding, updating and deleting objects like a regular LDAP server.

Real LDAP implementations (Redhat Directory Server, 389, openldap, Active
Directory) can have special behavior and side-effects that you may need to
support in order to run your tests properly.

Currently, we support some special behavior for one implementation: Redhat Directory Server/389 [https://access.redhat.com/documentation/en-us/red_hat_directory_server/11/html/administration_guide/index].

Redhat Directory Server/389

To get these behaviors, add the 389 tag to your ObjectStore:

>>> store = ObjectStore(tags=['389'])

In LDAPFakerMixin, apply the tags with like this for a single, default server:

import unittest
from ldap_faker import LDAPFakerMixin

class TestDefaultTaggedServer(LDAPFakerMixin, unittest.TestCase):

 ldap_modules = ['myapp']
 ldap_fixtures = ('data.json', ['389'])

Or like this for a named server:

import unittest
from ldap_faker import LDAPFakerMixin

class TestDefaultTaggedServer(LDAPFakerMixin, unittest.TestCase):

 ldap_modules = ['myapp']
 ldap_fixtures = [
 ('server1.json', 'ldap://server1', ['389']),
]

Features supported

Operational attributes

	entryid

	nsUniqueId

	entrydn

	createTimestamp

	modifyTimestamp

	creatorName

	modifierName

These work like they should in RHDS/389. They are not returned unless specifically
asked for during searches, and they are read-only. The timestamps and names will be
updated automatically.

nsrole and nsroledn

User objects support the nsroledn (writeable) and nsrole (read-only) attributes.
Adding a DN to nsroledn makes it appear automatically in nsrole, and any objects
with `objectClass of ldapsubentry will affect nsrole as it does in RHDS/389.

nsrole and nsroledn are operational attributes; they must be specifically requested
during searches.

Important

In RHDS/389, users do not seem to be identified by objectclass. We’re
simulating this by assuming that any object with a userPassword
attribute on it is a user.

ldapsubentries

The three ldapsubentry objectclasses are supported and behave as they do in RHDS/389:

	nsManagedRoleDefinition: does nothing when added or removed

	nsNestedRoleDefinition: user objects will gain the proper DN if they match one
of this object’s nsroledn entries.

	nsFilteredRoleDefinition: user objects will gain the proper DN if they match this
object’s nsRoleFilter.

Authentication and Authorization

Just like with real LDAP, you’ll need to bind to the fake LDAP “server” before
you can do certain LDAP operations.

Authorization within python-ldap-faker

Like a real LDAP server, these write operations require you to successfully do a
non-anonymous bind:

	add_s

	delete_s

	modify_s

	rename_s

Anonymous binds

You don’t need to do anything special to allow anonymous binds. This should work:

ldap_obj = fake_ldap.initialize('ldap://server')
ldap_obj.simple_bind_s()

So does this:

ldap_obj = fake_ldap.initialize('ldap://server')
ldap_obj.search_s('ou=bar,o=baz,c=country', ldap.SCOPE_SUBTREE, '(uid=user)')

Authenticated binds

To do an authenticated bind, you’ll need to load an appropriately configured
user object into the ObjectStore for your connection.

When you do an authenticated bind via FakeLDAPObject.simple_bind_s,
python-ldap-faker will look in its ObjectStore for an object
with the dn of who, and it will compare cred with the first
value of that object’s userPassword attribute specifically.

If, for example, your code wants to bind as uid=foo,ou=bar,o=baz,c=country
with password the password, then python-ldap-faker will expect an object
in the ObjectStore that minimally looks like this:

(
 'uid=foo,ou=bar,o=baz,c=country',
 {
 "userPassword": [b"the password"],
 }
)

Using ldap_faker with unittest

Most of the purpose of python-ldap-faker is to make automated testing
of code that uses python-ldap easier.

To this end, python-ldap-faker provides LDAPFakerMixin, a mixin class
for unittest.TestCase [https://docs.python.org/3/library/unittest.html#unittest.TestCase] which handles all the hard work of patching
and instrumenting the appropriate python-ldap functions, objects and
methods.

LDAPFakerMixin will do the following things for you:

	Read data from JSON fixture files to populate one or more
ObjectStore objects (our fake LDAP server class)

	Associate those ObjectStore objects with particular LDAP URIs

	Patch ldap.initialize [https://www.python-ldap.org/en/latest/reference/ldap.html#ldap.initialize] to return FakeLDAPObject objects
configured with the appropriate ObjectStore for the LDAP URI passed
into FakeLDAP.initialize

Configuring your LDAPFakerMixin TestCase

We need to set two class attributes on LDAPFakerMixin in order for
it to properly set up your tests:

	LDAPFakerMixin.ldap_modules: The list of your code’s modules in
which to patch ldap.initialize [https://www.python-ldap.org/en/latest/reference/ldap.html#ldap.initialize], ldap.set_option [https://www.python-ldap.org/en/latest/reference/ldap.html#ldap.set_option] and
ldap.get_option`

	LDAPFakerMixin.ldap_fixtures: A list of JSON fixture files with
which to create the ObjectStore objects

LDAPFakerMixin.ldap_modules

LDAPFakerMixin uses unittest.mock.patch [https://docs.python.org/3/library/unittest.mock.html#unittest.mock.patch] to patch your
code so that it uses our fake versions of ldap.initialize [https://www.python-ldap.org/en/latest/reference/ldap.html#ldap.initialize],
ldap.set_option [https://www.python-ldap.org/en/latest/reference/ldap.html#ldap.set_option] and ldap.get_option [https://www.python-ldap.org/en/latest/reference/ldap.html#ldap.get_option] instead of the real
one. The way patch works is that it must apply the patch within the context
of your module that does import ldap, not within the ldap module itself.
Thus, to make LDAPFakerMixin work for you, you must list all the
modules for code under test in which you do import ldap.

To list all the modules in which the code under test does import ldap, use
the LDAPFakerMixin.ldap_modules class attribute.

For example, if you have a class MyLDAPUsingClass in the module
myapp.myldapstuff, and you do import ldap in myapp.myldapstuff, for
instance:

import ldap

class MyLDAPUsingClass:

 def connect(self, uid: str, password: str):
 self.conn = ldap.initialize('ldap://server')
 self.conn.set_option(ldap.OPT_X_TLS_NEWCTX, 0)
 self.conn.start_tls_s()
 self.conn.simple_bind_s(
 f'uid={uid},ou=bar,o=baz,c=country',
 'the password'
)

To test this code, you would use this for ldap_modules:

import unittest
from ldap_faker import LDAPFakerMixin

from myapp.myldapstuff import MyLDAPUsingClass

class TestMyLDAPUsingCLass(LDAPFakerMixin, unittest.TestCase):

 ldap_modules = ['myapp.myldapstuff']

LDAPFakerMixin.ldap_fixtures

In order to effectively test your python-ldap using code, you’ll need to
populate an LDAPServerFactory one or more ObjectStore
objects bound to LDAP URIs. We use LDAPFakerMixin.ldap_fixtures to
declare file paths to fixture files to use to populate those
ObjectClass objects.

	Fixture files are JSON files in the format described in File format for ObjectStore.load_objects.

	File paths are either absolute paths or are treated as relative to the folder
in which your TestCase resides.

	Fixtures are loaded into the LDAPServerFactory once per
unittest.TestCase [https://docs.python.org/3/library/unittest.html#unittest.TestCase] via the unittest.TestCase.setUpClass [https://docs.python.org/3/library/unittest.html#unittest.TestCase.setUpClass]
classmethod.

You can configure your LDAPFakerMixin to use fixtures one of two ways:

	Use a single default fixture that will be used no matter which LDAP URI is
passed to FakeLDAP.initialize

	Bind each fixture to specific a LDAP URI. This allows you simulate talking to
several different LDAP servers.

Note

When binding fixtures to particular LDAP URIs, if your tries to use
FakeLDAP.initialize with an LDAP URI that was not explicitly configured,
python-ldap-faker will raise ldap.SERVER_DOWN [https://www.python-ldap.org/en/latest/reference/ldap.html#ldap.SERVER_DOWN]

This form sets up one default fixture:

import unittest
from ldap_faker import LDAPFakerMixin

from myapp.myldapstuff import MyLDAPUsingClass

class TestMyLDAPUsingCLass(LDAPFakerMixin, unittest.TestCase):

 ldap_fixtures = 'objects.json'

This form binds fixtures to LDAP URIs:

import unittest
from ldap_faker import LDAPFakerMixin

from myapp.myldapstuff import MyLDAPUsingClass

class TestMyLDAPUsingCLass(LDAPFakerMixin, unittest.TestCase):

 ldap_fixtures = [
 ('server1.json', 'ldap://server1.example.com'),
 ('server2.json', 'ldap://server2.example.com')
]

Test isolation

Each test method on your unittest.TestCase [https://docs.python.org/3/library/unittest.html#unittest.TestCase] will get a fresh, unaltered
copy of the fixture data, and connections, call histories, options set from previous
test methods will be cleared.

Test support offered by LDAPFakerMixin

For each test you run, your test will have access to the FakeLDAP
instance used for that test through the LDAPFakerMixin.fake_ldap
instance attribute. Each test gets a fresh FakeLDAP instance.

Note

For detailed information on any of the below, see the Developer Interface.

Some things to know about your FakeLDAP instance:

	FakeLDAP.connections lists all the FakeLDAPObject
connections created during your test method, in the order they were made. One
such object is created each time FakeLDAP.initialize is called by
your code.

	FakeLDAP.options is a OptionStore object that records
all the global LDAP options set during your test

	FakeLDAP.calls is a CallHistory object that records
calls (with arguments) to FakeLDAP.initialize,
FakeLDAP.set_option, FakeLDAP.get_option

Some things to know about the FakeLDAPObject objects in
FakeLDAP.connections:

	FakeLDAPObject.uri is the LDAP URI requested

	FakeLDAPObject.store is our ObjectStore copy

	FakeLDAP.options is a OptionStore object that records
all the LDAP options set on this connection during your test method

	FakeLDAPObject.calls is a CallHistory that records all
python-ldap api calls (with arguments) that your code made to this
FakeLDAPObject

	FakeLDAPObject.bound_dn is the dn of the user bound via
simple_bind_s, if any. If this is None, we did anonymous binding.

	FakeLDAPObject.tls_enabled will be set to True if start_tls_s
was used on this connection

Hooks: modifying ObjectStore behavior

python-ldap-faker provides a hook system to allow you to arbitrarily modify
behavior of ObjectStore. Primarily this is provided so that you can
emulate the behavior of the various LDAP implementations (Redhat Directory
Server, Active Directory, openldap, etc.).

You can also use hooks in your test code to produce behavior that may not be
available out of the box from python-ldap-faker.

Rules about hooks:

	Hooks are run in the order they are registered

	Each hook needs a callable with a particular signature

	Hooks are global – they apply to all ObjectStore instances and
instances instantiated (unless they are tagged hooks)

Registering hooks

Hooks have a name and a callable signature. Here is an example of registering a
hook to the pre_set hook, which will be run in ObjectStore.set
before the object is saved to the internal storage, and requires the callable
signature Callable[[ObjectStore, LDAPRecord, Optional[str]], None]:

from ldap_faker import hooks, ObjectStore, LDAPRecord

def pre_set_do_something_special(store: ObjectStore, record: LDAPRecord, bind_dn: str = None) -> None:
 ...

hooks.register('pre_set', pre_set_do_something_special)

Thereafter, whenever any code calls ObjectStore.set, this function
will be called with the store as the first argument, the record to be written as
the second argument and the bind_dn of the binding user as the third
argument.

Tagged hooks

Using tags, you can register a hook that will only apply to
ObjectStore instances which are themselves tagged with one of those
tags:

from ldap_faker import hooks, ObjectStore, LDAPRecord

def pre_set_do_something_special(store: ObjectStore, record: LDAPRecord, bind_dn: str = None) -> None:
 print(f'{bind_dn} ran pre_set_do_something_sepcial')

hooks.register('pre_set', pre_set_do_something_special, tags=['special'])

This hook will only be executed for ObjectStore instances whose tags
include special:

>>> store = ObjectStore(tags=['special'])
>>> obj = ('mydn', {'objectclass': [b'top']))
>>> store.set(obj, bind_dn='auser')
auser ran pre_set_do_something_special

It will not be executed for ObjectStore instances whose tags do not
include special:

>>> store = ObjectStore(tags=['other'])
>>> obj = ('mydn', {'objectclass': [b'top']))
>>> store.set(obj, bind_dn='auser')

Tagging ObjectClass instances in LDAPFakerMixin

When using LDAPFakerMixin, you can tag ldap_fixtures with particular tags.

To tag the default “server”, specify the fixture as a 2-tuple, where the first element
is the filename of the fixture file, and the second element is a list of tags:

import unittest
from ldap_faker import LDAPFakerMixin

class TestDefaultTaggedServer(LDAPFakerMixin, unittest.TestCase):

 ldap_modules = ['myapp']
 ldap_fixtures = ('data.json', ['special'])

To tag named “servers”, you can tag individual servers by providing a 3-tuple
instad of a 2-tuple, where the third element is the list of tags:

import unittest
from ldap_faker import LDAPFakerMixin

class TestDefaultTaggedServer(LDAPFakerMixin, unittest.TestCase):

 ldap_modules = ['myapp']
 ldap_fixtures = [
 ('server1.json', 'ldap://server1', ['special']),
 ('server2.json', 'ldap://server2')
]

Above, ldap://server1 will use all hooks tagged with special in addition
to any untagged hooks, while ldap://server2 will use only the untagged
hooks.

Available hooks

	pre_objectstore_init
	Signature: Callable[[store: ObjectStore], None]

Where store is the ObjectStore object.

This will be at the end of ObjectStore.__init__.

You can use this to set up any state you might need for later hooks by
adding keys to ObjectStore.controls, or to add attributes to
ObjectStore.operational_attributes.

	pre_set
	Signature: Callable[[store: ObjectStore, record: LDAPRecord, bind_dn: Optional[str] = None], None]

Where store is the ObjectStore object, record is the
record to be set and bind_dn is the dn of the user doing the set
(possibly None)

This will be executed on ObjectStore.set before the object
actually gets saved.

ObjectStore.set is called for every write operation:

	ObjectStore.load_objects

	ObjectStore.register_objects

	ObjectStore.register_object

	FakeLDAPObject.add_s

	FakeLDAPObject.modify_s

	FakeLDAPObject.delete_s

	FakeLDAPObject.rename_s

	post_set
	Signature: Callable[[store: ObjectStore, record: LDAPRecord, bind_dn: Optional[str] = None], None]

Where store is the ObjectStore object, record is the
record to be set and bind_dn is the dn of the user doing the set
(possibly None).

This will be executed on ObjectStore.set after the object
gets saved.

	pre_copy
	Signature: Callable[[store: ObjectStore, dn: str], None]

Where store is the ObjectStore object, and dn is the
DN of the object to copy.

This will be executed on ObjectStore.copy before the object
actually gets retrieved from the store to be copied.

	post_copy
	Signature: Callable[[store: ObjectStore, data: LDAPData], LDAPData]

Where store is the ObjectStore object, and dn is the
DN of the object to copy. It should return the modified LDAPData dict.

This will be executed on ObjectStore.copy after the object is
retrieved from the store and :py:func:copy.deepcopy has run, but before
returning the data to the caller.

	pre_create
	Signature: Callable[[store: ObjectStore, dn: str, modlist: AddModlist, bind_dn: str = None], None]

Where store is the ObjectStore object, dn is the record
to be created, modlist is modlist to be used for creating the record,
and bind_dn is the dn of the user doing the create (possibly
None).

This will be executed on ObjectStore.create before the modlist
gets processed.

ObjectStore.create is what actually does the work when
FakeLDAPObject.add_s is called.

	post_create
	Signature: Callable[[store: ObjectStore, record: LDAPRecord, bind_dn: Optional[str] = None], None]

Where store is the ObjectStore object, record is the
record to be created, and bind_dn is the dn of the user doing the
create (possibly None).

This will be executed on ObjectStore.create after the modlist has
processed to build the object, but before it has been writen to the data store.

	pre_update
	Signature: Callable[[store: ObjectStore, dn: str, modlist: Modlist, bind_dn: str = None], None]

Where store is the ObjectStore object, dn is the
record to be modified`, modlist is modlist to be applied to the record,
and bind_dn is the dn of the user doing the update (possibly None).

This will be executed on ObjectStore.update before the object
actually gets saved.

ObjectStore.update is what actually does the work when
FakeLDAPObject.modify_s is called.

	post_update
	Signature: Callable[[store: ObjectStore, record: LDAPRecord, bind_dn: Optional[str] = None], None]

Where store is the ObjectStore object, record is the
updated record and bind_dn is the dn of the user doing the update
(possibly None)

This will be executed on ObjectStore.update after the modlist has
been applied to the object, but before it has been writen to the data store.

	pre_delete
	Signature: Callable[[store: ObjectStore, record: LDAPRecord, bind_dn: Optional[str] = None], None]

Where store is the ObjectStore object, record is the
record to deleted, and bind_dn is the dn of the user doing the set
(possibly None).

This will be executed on ObjectStore.delete before the object
actually gets deleted from the data store.

ObjectStore.delete is what actually does the work when
FakeLDAPObject.delete_s is called, and is also called
during FakeLDAPObject.rename_s to delete the old object.

	post_delete
	Signature: Callable[[store: ObjectStore, record: LDAPRecord, bind_dn: Optional[str] = None], None]

Where store is the ObjectStore object, record is the
record deleted, and bind_dn is the dn of the user doing the set
(possibly None).

This will be executed on ObjectStore.delete after the object
actually gets deleted from the data store.

	pre_register_object
	Signature: Callable[[store: ObjectStore, record: LDAPRecord], None]

Where store is the ObjectStore object and record is the
record to be registered.

This will be executed on ObjectStore.register_object before the object
actually gets saved.

	post_register_object
	Signature: Callable[[store: ObjectStore, record: LDAPRecord], None]

Where store is the ObjectStore object and record is the
record that was registered.

This will be executed on ObjectStore.register_object after the object
gets saved.

	pre_register_objects
	Signature: Callable[[store: ObjectStore, records: List[LDAPRecord]], None]

Where store is the ObjectStore object and records is the
list of records to be registered.

This will be executed on ObjectStore.register_objects before the
objects actually get saved.

	post_register_objects
	Signature: Callable[[store: ObjectStore, records: List[LDAPRecord]], None]

Where store is the ObjectStore object and records are the
records that were registered.

This will be executed on ObjectStore.register_objects after the
objects get saved.

	pre_load_objects
	Signature: Callable[[store: ObjectStore, filename: str], None]

Where store is the ObjectStore object and filename is the
name of the data file to load.

This will be executed on ObjectStore.load_objects before the
file gets loaded.

	post_load_objects
	Signature: Callable[[store: ObjectStore, records: List[LDAPRecord]], None]

Where store is the ObjectStore object and records are the
records that were loaded from the file.

This will be executed on ObjectStore.load_objects after the
objects loaded from the file get saved.

Developer Interface

This part of the documentation covers all the classes and functions that make up python-ldap-faker.

Unittest Support

	
class ldap_faker.LDAPFakerMixin(*args, **kwargs)

	This is a mixin for use with unittest.TestCase [https://docs.python.org/3/library/unittest.html#unittest.TestCase]. Properly
configured, it will patch ldap.initialize [https://www.python-ldap.org/en/latest/reference/ldap.html#ldap.initialize] to use our
FakeLDAP.initialize fake function instead, which will
return FakeLDAPObject objects
instead of ldap.ldapobject.LDAPObject objects.

ldap_modules is a list of python module paths in which we should
patch ldap.initialize [https://www.python-ldap.org/en/latest/reference/ldap.html#ldap.initialize] with our FakeLDAP.initialize
method. For example:

class TestMyStuff(LDAPFakerMixin, unittest.TestCase):

 ldap_modules = ['myapp.module']

will cause LDAPFakerMixin to patch
myapp.module.ldap.initialize.

ldap_fixtures names one or more JSON
files containing LDAP records to load into a ObjectStore via
ObjectStore.load_objects. ldap_fixtures
can be either a single string, a Tuple[str, List[str]], or a list
of Tuple[str, str, List[str]].

If we define our test class like so:

class TestMyStuff(LDAPFakerMixin, unittest.TestCase):

 ldap_fixtures = 'myfixture.json'

We will build our LDAPServerFactory with a single default
ObjectStore with the contents of myfixture.json loaded in.

If we define our test class like so:

class TestMyStuff(LDAPFakerMixin, unittest.TestCase):

 ldap_fixtures = ('myfixture.json', ['389'])

We will build our LDAPServerFactory with a single default
ObjectStore with the contents of myfixture.json loaded in,
with the tag 389 applied to it.

If we define our test class like this instead:

class TestMyStuff(LDAPFakerMixin, unittest.TestCase):

 ldap_fixtures = [
 ('server1.json', 'ldap://server1', []),
 ('server2.json', 'ldap://read-server2', ['389']),
]

we will build our LDAPServerFactory with two
ObjectStore objects. The first will have the data from
server1.json and will be used with uri ldap://server1. The
second will be used with uri ldap://server2 and have the data from with
the contents of server2.json loaded in, and will have the tag 389
applied to it.

Note

The tags are used when configuring behavior for our
ObjectStore`. The 389 tag tells the
ObjectStore to emulate a 389 type LDAP server (Redhat
Directory Server).

	
ldap_modules: List [https://docs.python.org/3/library/typing.html#typing.List][str [https://docs.python.org/3/library/stdtypes.html#str]] = []

	The list of python paths to modules that import ldap

	
ldap_fixtures: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][ldap_faker.types.LDAPFixtureList] = None

	The filenames of fixtures to load into our fake LDAP servers

	
server_factory: LDAPServerFactory

	The LDAPServerFactory configured by our setUpClass

	
fake_ldap: FakeLDAP

	the FakeLDAP instance created by setUp

	
classmethod resolve_file(filename: str [https://docs.python.org/3/library/stdtypes.html#str]) → str [https://docs.python.org/3/library/stdtypes.html#str]

	Given filename, if that filename is a non-absolute path, resolve
that filename to an absolute path under the folder in which our
subclass’ file resides. If filename is an absoute path, don’t change
it.

	Parameters

	filename – the non-absolute file path to a fixture file

	Raises

	FileNotFoundError [https://docs.python.org/3/library/exceptions.html#FileNotFoundError] – the fixture file did not exist

	Returns

	The absolute path to the fixture file.

	
classmethod load_servers(server_factory: LDAPServerFactory) → None [https://docs.python.org/3/library/constants.html#None]

	Configure server_factory with one or more ObjectStore objects by
looking at ldap_fixtures, a dict where the key is a uri and the
value is the name of a JSON file to use as the objects for the associated
ObjectStore

Note

If you want to populate your LDAPServerFactory in a
different way than loading directly from the JSON files listed in
ldap_fixtures, this is the classmethod you want to
override.

	Parameters

	server_factory – the LDAPServerFactory object to populate

	
classmethod setUpClass()

	Build the LDAPServerFactory we’ll use and save it as a class attribute.

We do this as a classmethod because constructing our
ObjectStore objects is time consuming and we don’t want to have to do it
for each of our tests.

	
classmethod tearDownClass()

	Delete our server_factory so we con’t corrupt future tests or leak memory.

	
setUp()

	Create a FakeLDAP instance, make it use the
server_factory that our setUpClass created, and
patch [https://docs.python.org/3/library/unittest.mock.html#unittest.mock.patch] ldap.initialize [https://www.python-ldap.org/en/latest/reference/ldap.html#ldap.initialize] in
each of the modules named in ldap_modules. Save the
FakeLDAP instance to our fake_ldap attribute for
later use in our test code.

	
tearDown()

	Undo the patches we made in setUp

	
last_connection() → Optional [https://docs.python.org/3/library/typing.html#typing.Optional][FakeLDAPObject]

	Return the FakeLDAPObject for the last connection made
during ourtest. Hopefully a useful shortcut for when we only make one
connection.

	Returns

	The last connection made

	
get_connections(uri: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][str [https://docs.python.org/3/library/stdtypes.html#str]] = None) → List [https://docs.python.org/3/library/typing.html#typing.List][FakeLDAPObject]

	Return a the list of FakeLDAPObject objects generated during
our test, optionally filtered by LDAP URI.

	Keyword Arguments

	uri – the LDAP URI by which to filter our connections

	
assertGlobalOptionSet(option: int [https://docs.python.org/3/library/functions.html#int], value: ldap_faker.types.LDAPOptionValue) → None [https://docs.python.org/3/library/constants.html#None]

	Assert that a global LDAP option was set.

	Parameters

	
	option – an LDAP option (e.g. ldap.OPT_DEBUG_LEVEL)

	value – the value we expect the option to be set to

	
assertGlobalFunctionCalled(api_name: str [https://docs.python.org/3/library/stdtypes.html#str]) → None [https://docs.python.org/3/library/constants.html#None]

	Assert that a global LDAP function was called.

	Parameters

	api_name – the name of the function to look for (e.g. initialize)

	
assertLDAPConnectionOptionSet(conn: FakeLDAPObject, option: str [https://docs.python.org/3/library/stdtypes.html#str], value: ldap_faker.types.LDAPOptionValue) → None [https://docs.python.org/3/library/constants.html#None]

	Assert that a specific FakeLDAPObject option was set with a
specific value.

	Parameters

	
	conn – the connection object to examine

	option – the code for the option (e.g. ldap.OPT_X_TLS_NEWCTX [https://www.python-ldap.org/en/latest/reference/ldap.html#ldap.OPT_X_TLS_NEWCTX])

	value – the value we expect the option to be set to

	
assertLDAPConnectionMethodCalled(conn: FakeLDAPObject, api_name: str [https://docs.python.org/3/library/stdtypes.html#str], arguments: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][Dict [https://docs.python.org/3/library/typing.html#typing.Dict][str [https://docs.python.org/3/library/stdtypes.html#str], Any [https://docs.python.org/3/library/typing.html#typing.Any]]] = None) → None [https://docs.python.org/3/library/constants.html#None]

	Assert that a specific FakeLDAPObject method was called, possibly
specifying the specific arguments it should have been called with.

	Parameters

	
	conn – the connection object to examine

	api_name – the name of the function to look for (e.g. simple_bind_s)

	Keyword Arguments

	arguments – if given, assert that the call exists AND was called this set
of arguments. See LDAPCallRecord for how the arguments
dict should be constructed.

	
assertLDAPConnectionMethodCalledAfter(conn: FakeLDAPObject, api_name: str [https://docs.python.org/3/library/stdtypes.html#str], target_api_name: str [https://docs.python.org/3/library/stdtypes.html#str]) → None [https://docs.python.org/3/library/constants.html#None]

	Assert that a specific FakeLDAPObject method was called after another
specific FakeLDAPObject method.

	Parameters

	
	conn – the connection object to examine

	api_name – the name of the function to look for (e.g. simple_bind_s)

	target_api_name – the name of the function which should appear before
api_name in the call history

	
class ldap_faker.LDAPCallRecord(api_name: str [https://docs.python.org/3/library/stdtypes.html#str], args: Dict [https://docs.python.org/3/library/typing.html#typing.Dict][str [https://docs.python.org/3/library/stdtypes.html#str], Any [https://docs.python.org/3/library/typing.html#typing.Any]])

	This is a single LDAP call record, used by CallHistory to store
information about calls to LDAP api functions.

api_name is the name of the LDAP api call made
(e.g. simple_bind_s, search_s).

args is the argument list of the call, including defaults for
keyword arguments not passed. This is a dict where the key is the name of
the positional or keyword argument, and the value is the passed in (or
default) value for that argument.

Example

If we make this call to a patched FakeLDAPObject:

ldap_obj.search_s('ou=bar,o=baz,c=country', ldap.SCOPE_SUBTREE, '(uid=foo)')

This will be recorded as:

LDAPCallRecord(
 api_name='search_s',
 args={
 'base': 'ou=bar,o=baz,c=country',
 'scope': 2,
 'filterstr': '(uid=foo)',
 'attrlist': None,
 'attrsonly': 0
 }
)

	
api_name: str [https://docs.python.org/3/library/stdtypes.html#str]

	the name LDAP api call

	
args: Dict [https://docs.python.org/3/library/typing.html#typing.Dict][str [https://docs.python.org/3/library/stdtypes.html#str], Any [https://docs.python.org/3/library/typing.html#typing.Any]]

	the args and kwargs dict

	
class ldap_faker.CallHistory(calls: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][List [https://docs.python.org/3/library/typing.html#typing.List][LDAPCallRecord]] = None)

	This class records the python-ldap call history for a particular
FakeLDAPObject as LDAPCallRecord objects. It works
in conjunction with the @record_call decorator. An
CallHistory object will be configured on each
FakeLDAPObject and on each FakeLDAP object capture
their call history.

We use this in our tests with appropriate asserts to ensure that our code
called the python-ldap methods we expected, in the order we expected,
with the arguments we expected.

	
filter_calls(api_name: str [https://docs.python.org/3/library/stdtypes.html#str]) → List [https://docs.python.org/3/library/typing.html#typing.List][LDAPCallRecord]

	Filter our call history by function name.

	Parameters

	api_name – look through our history for calls to this function

	Returns

	A list of (api_name, arguments) tuples in the order in which the
calls were made. Arguments is a Dict[str, Any].

	
property calls: List [https://docs.python.org/3/library/typing.html#typing.List][LDAPCallRecord]

	This property returns the list of all calls made against the parent object.

Example

To test that your code did a ldap.simple_bind_s call with the usernam
and password you expected, you could do:

from unittest import TestCase
import ldap
from ldap_faker import LDAPFakerMixin

from my_code import App

class MyTest(LDAPFakerMixin, TestCase):

 ldap_modules = ['my_code']
 ldap_fixtures = 'myfixture.json'

 def test_option_was_set(self):
 app = MyApp()
 app.do_the_thing()
 conn = self.ldap_faker.connections[0]
 self.assertEqual(
 conn.calls,
 [('simple_bind_s', {'who': 'uid=foo,ou=dept,o=org,c=country', 'cred': 'pass'})]
)

	Returns

	Returns a list of 2-tuples, one for each method call made since
the last reset. Each tuple contains the name of the API and a dictionary
of arguments. Argument defaults are included.

	
property names: List [https://docs.python.org/3/library/typing.html#typing.List][str [https://docs.python.org/3/library/stdtypes.html#str]]

	Returns the list names of python-ldap functions or methods called, in
the order they were called. You can use this to test whether an particulary

Example

To test that your code did at least one ldap.add_s call, you
could do:

from unittest import TestCase
import ldap
from ldap_faker import LDAPFakerMixin

from my_code import App

class MyTest(LDAPFakerMixin, TestCase):

 ldap_modules = ['my_code']
 ldap_fixtures = 'myfixture.json'

 def test_option_was_set(self):
 app = MyApp()
 app.do_the_thing()
 conn = self.ldap_faker.connections[0]
 self.assertEqual('add_s" in conn.calls.names)

	Returns

	A list of method names, in the order they were called.

python-ldap replacements

	
class ldap_faker.FakeLDAP(server_factory: LDAPServerFactory)

	We use this class to house our replacement code for these three prime python-ldap
functions:

	ldap.initialize [https://www.python-ldap.org/en/latest/reference/ldap.html#ldap.initialize]

	ldap.set_option [https://www.python-ldap.org/en/latest/reference/ldap.html#ldap.set_option]

	ldap.get_option [https://www.python-ldap.org/en/latest/reference/ldap.html#ldap.get_option]

The class takes a fully configured LDAPServerFactory as an argument, and
will use that factory’s collection of OptionStore objects to construct new
FakeLDAPObject objects.

As a test runs, FakeLDAP keeps track of each LDAP connection made and
each global LDAP call made so that they can be inspected after your code has run.

Note

This is meant to be a disposable object, recreated for each test method.
When used properly, all internal state (connections made, calls made,
options set) will be empty at the start of every test.

	Parameters

	server_factory – a fully configured LDAPServerFactory

	
connections: List [https://docs.python.org/3/library/typing.html#typing.List][FakeLDAPObject]

	list of FakeLDAPObject connections created in the order in which they were requested

	
calls: CallHistory

	The call history for global ldap function calls

	
options: OptionStore

	A dictionary of LDAP options set

	
initialize(uri: str, trace_level: int = 0, trace_file: ~typing.TextIO = <_io.TextIOWrapper name='<stdout>' mode='w' encoding='utf-8'>, trace_stack_limit: int = None, fileno: ~typing.Any = None) → FakeLDAPObject

	This is the method we use to patch ldap.initialize [https://www.python-ldap.org/en/latest/reference/ldap.html#ldap.initialize] when we
are testing our LDAP code. When it is called, we will ask our
FakeLDAP.server_factory factory for the ObjectStore most
appropriate for the LDAP uri uri, create a FakeLDAPObject
with a copy.deepcopy [https://docs.python.org/3/library/copy.html#copy.deepcopy] of that ObjectStore, and return
the FakeLDAPObject.

Note

Of all the arguments in our signature, we only actually use uri. The
other arguments are recorded in our FakeLDAP.calls call history, but
are otherwise ignored.

	Parameters

	
	uri – an LDAP URI

	trace_level – logging level (ignored)

	trace_file – file descriptor to which to write traces (ignored)

	trace_stack_limit – stack limit of tracebacks in the debug log (ignored)

	fileno – a socket or file descriptor (ignored)

	Raises

	ldap.SERVER_DOWN [https://www.python-ldap.org/en/latest/reference/ldap.html#ldap.SERVER_DOWN] – could not find an appropriate ObjectStore for uri

	Returns

	A properly configured FakeLDAPObject

	
set_option(option: int [https://docs.python.org/3/library/functions.html#int], invalue: ldap_faker.types.LDAPOptionValue) → None [https://docs.python.org/3/library/constants.html#None]

	Set a global python-ldap option. This will create a key option in our
FakeLDAP.options dictionary and set its value to value.

Example

In your test code, you can thus test whether your code set the
proper global LDAP option like so:

from unittest import TestCase
import ldap
from ldap_faker import LDAPFakerMixin

from my_code import App

class MyTest(LDAPFakerMixin, TestCase):

 ldap_modules = ['my_code']
 ldap_fixtures = 'myfixture.json'

 def test_option_was_set(self):
 app = MyApp()
 app.set_the_option(ldap.OPT_DEBUG_LEVEL, 1)
 self.assertEqual(self.ldap_faker.options[ldap.OPT_DEBUG_LEVEL], 1)

	Parameters

	
	option – an option from python-ldap

	invalue – the value to set for the option

	
get_option(option: int [https://docs.python.org/3/library/functions.html#int]) → ldap_faker.types.LDAPOptionValue

	Get a global python-ldap option. If our code hasn’t set an option yet,
return the default from python-ldap for that option.

	Parameters

	option – an option from python-ldap

	Returns

	The value currently set for the option.

	
has_connection(uri: str [https://docs.python.org/3/library/stdtypes.html#str]) → bool [https://docs.python.org/3/library/functions.html#bool]

	Test to see whether an ldap.initialize [https://www.python-ldap.org/en/latest/reference/ldap.html#ldap.initialize] call was made with LDAP URI of uri.

	Parameters

	uri – The LDAP URI to look for in our connection history

	Returns

	True if at least one connection to uri was made, False otherwise.

	
get_connections(uri: str [https://docs.python.org/3/library/stdtypes.html#str]) → List [https://docs.python.org/3/library/typing.html#typing.List][FakeLDAPObject]

	Return a list of FakeLDAPObject connections to LDAP URI uri.

	Parameters

	uri – The LDAP URI to look for in our connection history

	Returns

	A list of FakeLDAPObject objects associated with LDAP URI uri.

	
connection_calls(api_name: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][str [https://docs.python.org/3/library/stdtypes.html#str]] = None, uri: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][str [https://docs.python.org/3/library/stdtypes.html#str]] = None) → CallHistory

	Filter our the call history for our connections by function name and
optionally LDAP URI.

Args:

	Keyword Arguments

	
	api_name – restrict through our history for calls to this function

	uri – restrict our search to only calls to this URI

	Returns

	A CallHistory with combined calls from the filtered connections.

	
class ldap_faker.FakeLDAPObject(uri: str [https://docs.python.org/3/library/stdtypes.html#str], store: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][ObjectStore] = None)

	This class simulates most of the interface of ldap.ldapobject.LDAPObject
which is the object that gets returned when you call ldap.initialize().

Note

This is a disposable object that should be recreated for each test, mostly
because changes to our ObjectStore can’t be undone without re-copying
from its source in Servers.

	Parameters

	uri – the LDAP URI of the connection

	Keyword Arguments

	directory – a populated ObjectStore

	
uri: str [https://docs.python.org/3/library/stdtypes.html#str]

	the LDAP URI for this connection

	
hostname

	port for this connection

	Type

	the host

	
options: OptionStore

	we store data from set_option calls here

	
store: ObjectStore

	our copy of our ObjectStore for this connection

	
calls: CallHistory

	The method call history

	
tls_enabled: bool [https://docs.python.org/3/library/functions.html#bool]

	Set to True if start_tls_s was called

	
bound_dn: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][str [https://docs.python.org/3/library/stdtypes.html#str]]

	Set by simple_bind_s to the dn of the user after success

	
deref: int [https://docs.python.org/3/library/functions.html#int]

	Controls whether aliases are automatically dereferenced

	
protocol_version: int [https://docs.python.org/3/library/functions.html#int]

	Version of LDAP in use (always ldap.VERSION3`)

	
sizelimit: int [https://docs.python.org/3/library/functions.html#int]

	Limit on size of message to receive from server

	
network_timeout: int [https://docs.python.org/3/library/functions.html#int]

	Limit on waiting for a network response, in seconds.

	
timelimit: int [https://docs.python.org/3/library/functions.html#int]

	Limit on waiting for any response, in seconds.

	
timeout: int [https://docs.python.org/3/library/functions.html#int]

	Limit on waiting for any response, in seconds.

	
set_option(option: int [https://docs.python.org/3/library/functions.html#int], invalue: ldap_faker.types.LDAPOptionValue) → None [https://docs.python.org/3/library/constants.html#None]

	This method sets the value of the
ldap.ldap.ldapobject.LDAPObject` option specified by
option to invalue.

	Parameters

	
	option – the option

	value – the value to set the option to

	Raises

	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] – option is not a valid python-ldap option

	
get_option(option: int [https://docs.python.org/3/library/functions.html#int]) → ldap_faker.types.LDAPOptionValue

	This method returns the value of the
ldap.ldap.ldapobject.LDAPObject` option specified by
option.

Note

If your code did not call FakeLDAPOption.set_option for this option,
we’ll get KeyError

	Parameters

	option – the option

	Raises

	
	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] – option is not a valid python-ldap option

	KeyError [https://docs.python.org/3/library/exceptions.html#KeyError] – option is not a valid python-ldap option

	Returns

	The value of the option

	
simple_bind_s(who: str [https://docs.python.org/3/library/stdtypes.html#str] = None, cred: str [https://docs.python.org/3/library/stdtypes.html#str] = None, serverctrls: List [https://docs.python.org/3/library/typing.html#typing.List][LDAPControl [https://www.python-ldap.org/en/latest/reference/ldap-controls.html#ldap.controls.LDAPControl]] = None, clientctrls: List [https://docs.python.org/3/library/typing.html#typing.List][LDAPControl [https://www.python-ldap.org/en/latest/reference/ldap-controls.html#ldap.controls.LDAPControl]] = None) → Optional [https://docs.python.org/3/library/typing.html#typing.Optional][Tuple [https://docs.python.org/3/library/typing.html#typing.Tuple][Union [https://docs.python.org/3/library/typing.html#typing.Union][int [https://docs.python.org/3/library/functions.html#int], str [https://docs.python.org/3/library/stdtypes.html#str]], List [https://docs.python.org/3/library/typing.html#typing.List][Tuple [https://docs.python.org/3/library/typing.html#typing.Tuple][str [https://docs.python.org/3/library/stdtypes.html#str], Dict [https://docs.python.org/3/library/typing.html#typing.Dict][str [https://docs.python.org/3/library/stdtypes.html#str], List [https://docs.python.org/3/library/typing.html#typing.List][bytes [https://docs.python.org/3/library/stdtypes.html#bytes]]]]], int [https://docs.python.org/3/library/functions.html#int], List [https://docs.python.org/3/library/typing.html#typing.List][LDAPControl [https://www.python-ldap.org/en/latest/reference/ldap-controls.html#ldap.controls.LDAPControl]]]]

	Perform a bind. This will look in the object store for an object with dn of
who and compare cred to the userPassword attribute for that
object.

	Keyword Arguments

	
	who – the dn of the user with which to bind

	cred – the password for that user

	Raises

	ldap.INVALID_CREDENTIALS [https://www.python-ldap.org/en/latest/reference/ldap.html#ldap.INVALID_CREDENTIALS] – the who did not match the cred

	
whoami_s() → str [https://docs.python.org/3/library/stdtypes.html#str]

	This synchronous method implements the LDAP “Who Am I?” extended
operation.

It is useful for finding out to find out which identity is assumed by
the LDAP server after a bind.

	Returns

	{the dn}”

	Return type

	Empty string if we haven’t bound as an identity, otherwise “dn

	
search_ext(base: str [https://docs.python.org/3/library/stdtypes.html#str], scope: int [https://docs.python.org/3/library/functions.html#int], filterstr: str [https://docs.python.org/3/library/stdtypes.html#str] = '(objectClass=*)', attrlist: List [https://docs.python.org/3/library/typing.html#typing.List][str [https://docs.python.org/3/library/stdtypes.html#str]] = None, attrsonly: int [https://docs.python.org/3/library/functions.html#int] = 0, serverctrls: List [https://docs.python.org/3/library/typing.html#typing.List][LDAPControl [https://www.python-ldap.org/en/latest/reference/ldap-controls.html#ldap.controls.LDAPControl]] = None, clientctrls: List [https://docs.python.org/3/library/typing.html#typing.List][LDAPControl [https://www.python-ldap.org/en/latest/reference/ldap-controls.html#ldap.controls.LDAPControl]] = None, timeout: int [https://docs.python.org/3/library/functions.html#int] = -1, sizelimit: int [https://docs.python.org/3/library/functions.html#int] = 0) → int [https://docs.python.org/3/library/functions.html#int]

	

	
result3(msgid: int [https://docs.python.org/3/library/functions.html#int] = -1, all: int [https://docs.python.org/3/library/functions.html#int] = 1, timeout: int [https://docs.python.org/3/library/functions.html#int] = None) → Tuple [https://docs.python.org/3/library/typing.html#typing.Tuple][Union [https://docs.python.org/3/library/typing.html#typing.Union][int [https://docs.python.org/3/library/functions.html#int], str [https://docs.python.org/3/library/stdtypes.html#str]], List [https://docs.python.org/3/library/typing.html#typing.List][Tuple [https://docs.python.org/3/library/typing.html#typing.Tuple][str [https://docs.python.org/3/library/stdtypes.html#str], Dict [https://docs.python.org/3/library/typing.html#typing.Dict][str [https://docs.python.org/3/library/stdtypes.html#str], List [https://docs.python.org/3/library/typing.html#typing.List][bytes [https://docs.python.org/3/library/stdtypes.html#bytes]]]]], int [https://docs.python.org/3/library/functions.html#int], List [https://docs.python.org/3/library/typing.html#typing.List][LDAPControl [https://www.python-ldap.org/en/latest/reference/ldap-controls.html#ldap.controls.LDAPControl]]]

	Retrieve the results of our FakeLDAPObject.search_ext call.

Note

The all and timeout keyword arguments are ignored here.

	Keyword Arguments

	
	msgid – the msgid returned by the FakeLDAPObject.search_ext call

	all – if 1, return all results at once; if 0, return them one at a time (ignored)

	Returns

	A ldap.result3 4-tuple.

	
search_s(base: str [https://docs.python.org/3/library/stdtypes.html#str], scope: int [https://docs.python.org/3/library/functions.html#int], filterstr: str [https://docs.python.org/3/library/stdtypes.html#str] = '(objectClass=*)', attrlist: List [https://docs.python.org/3/library/typing.html#typing.List][str [https://docs.python.org/3/library/stdtypes.html#str]] = None, attrsonly: int [https://docs.python.org/3/library/functions.html#int] = 0) → List [https://docs.python.org/3/library/typing.html#typing.List][ldap_faker.types.LDAPRecord]

	

	
start_tls_s() → None [https://docs.python.org/3/library/constants.html#None]

	Negotiate TLS with server.

This sets our tls_enabled attribute to True.

	Raises

	ldap.LOCAL_ERROR [https://www.python-ldap.org/en/latest/reference/ldap.html#ldap.LOCAL_ERROR] – start_tls_s was done twice on the same
 connection

	
compare_s(dn: str [https://docs.python.org/3/library/stdtypes.html#str], attr: str [https://docs.python.org/3/library/stdtypes.html#str], value: bytes [https://docs.python.org/3/library/stdtypes.html#bytes]) → bool [https://docs.python.org/3/library/functions.html#bool]

	Perform an LDAP comparison between the attribute named attr of entry
dn, and the value value. For multi-valued attributes, the test
is whether any of the values match value.

	Parameters

	
	dn – the dn of the object to look at

	attr – the name of the attribute on our object to compare

	value – the value to which to compare the object value

	Raises

	ldap.NO_SUCH_OBJECT [https://www.python-ldap.org/en/latest/reference/ldap.html#ldap.NO_SUCH_OBJECT] – no object with dn of dn exists in our object store

	Returns

	True if the values are equal, False otherwise.

	
modify_s(dn, modlist: ldap_faker.types.ModList) → Tuple [https://docs.python.org/3/library/typing.html#typing.Tuple][Union [https://docs.python.org/3/library/typing.html#typing.Union][int [https://docs.python.org/3/library/functions.html#int], str [https://docs.python.org/3/library/stdtypes.html#str]], List [https://docs.python.org/3/library/typing.html#typing.List][Tuple [https://docs.python.org/3/library/typing.html#typing.Tuple][str [https://docs.python.org/3/library/stdtypes.html#str], Dict [https://docs.python.org/3/library/typing.html#typing.Dict][str [https://docs.python.org/3/library/stdtypes.html#str], List [https://docs.python.org/3/library/typing.html#typing.List][bytes [https://docs.python.org/3/library/stdtypes.html#bytes]]]]], int [https://docs.python.org/3/library/functions.html#int], List [https://docs.python.org/3/library/typing.html#typing.List][LDAPControl [https://www.python-ldap.org/en/latest/reference/ldap-controls.html#ldap.controls.LDAPControl]]]

	Modify the object with dn of dn using the modlist modlist.

Each element in the list modlist should be a tuple of the form
(mod_op: int, mod_type: str, mod_vals: Union[bytes, List[bytes]]), where
mod_op indicates the operation (one of ldap.MOD_ADD,
ldap.MOD_DELETE, or ldap.MOD_REPLACE, mod_type
is a string indicating the attribute type name, and mod_vals is
either a bytes value or a list of bytes values to add, delete or
replace respectively. For the delete operation, mod_vals may be None
indicating that all attributes are to be deleted.

Note

ldap.modlist.modifyModlist [https://www.python-ldap.org/en/latest/reference/ldap-modlist.html#ldap.modlist.modifyModlist] MAY be your friend here for
generating modlists. Do read the note in those docs about
ldap.MOD_DELETE / ldap.MOD_ADD vs.
ldap.MOD_REPLACE to see whether that will affect you poorly.

Example

Here is an example of constructing a modlist for modify_s:

>>> import ldap
>>> modlist = [
 (ldap.MOD_ADD, 'mail', [b'user@example.com', b'user+foo@example.com']),
 (ldap.MOD_REPLACE, 'cn', [b'My Name']),
 (ldap.MOD_DELETE, 'gecos', None)
]

	Parameters

	
	dn – the dn of the object to delete

	modlist – a modlist suitable for modify_s

	Raises

	
	ldap.NO_SUCH_OBJECT [https://www.python-ldap.org/en/latest/reference/ldap.html#ldap.NO_SUCH_OBJECT] – no object with dn of dn exists in our object store

	ldap.TYPE_OR_VALUE_EXISTS [https://www.python-ldap.org/en/latest/reference/ldap.html#ldap.TYPE_OR_VALUE_EXISTS] – you tried to add an value to an attribute, but it was
 already in the value list

	ldap.INSUFFICIENT_ACCESS [https://www.python-ldap.org/en/latest/reference/ldap.html#ldap.INSUFFICIENT_ACCESS] – you need to do a non-anonymous bind before doing this

	Returns

	A ldap.result3 type 4-tuple.

	
delete_s(dn: str [https://docs.python.org/3/library/stdtypes.html#str]) → None [https://docs.python.org/3/library/constants.html#None]

	Delete the object with dn of dn from our object store.

Each element in the list modlist should be a tuple of the form
(mod_type: str, mod_vals: List[bytes]), where mod_type is a
string indicating the attribute type name, and mod_vals is either a
string value or a list of string values to add, delete or replace
respectively. For the delete operation, mod_vals may be None
indicating that all attributes are to be deleted.

	Parameters

	dn – the dn of the object to delete

	Raises

	
	ldap.NO_SUCH_OBJECT [https://www.python-ldap.org/en/latest/reference/ldap.html#ldap.NO_SUCH_OBJECT] – no object with dn of dn exists in our object store

	ldap.INSUFFICIENT_ACCESS [https://www.python-ldap.org/en/latest/reference/ldap.html#ldap.INSUFFICIENT_ACCESS] – you need to do a non-anonymous bind before doing this

	
add_s(dn: str [https://docs.python.org/3/library/stdtypes.html#str], modlist: ldap_faker.types.AddModList) → None [https://docs.python.org/3/library/constants.html#None]

	Add an object with dn of dn.

modlist is similar the one passed to modify_s, except
that the operation integer is omitted from the tuples in modlist. You
might want to look into sub-module refmodule{ldap.modlist} for
generating the modlist.

Example

Here is an example of constructing a modlist for add_s:

>>> modlist = [
 ('uid', [b'user']),
 ('gidNumber', [b'1000']),
 ('uidNumber', [b'1000']),
 ('loginShell', [b'/bin/bash']),
 ('homeDirectory', [b'/home/user']),
 ('userPassword', [b'the password']),
 ('cn', [b'My Name']),
 ('objectClass', [b'top', b'posixAccount']),
]

	Parameters

	
	dn – the dn of the object to add

	modlist – the add modlist

	Raises

	
	ldap.ALREADY_EXISTS [https://www.python-ldap.org/en/latest/reference/ldap.html#ldap.ALREADY_EXISTS] – an object with dn of dn already exists in our object store

	ldap.INSUFFICIENT_ACCESS [https://www.python-ldap.org/en/latest/reference/ldap.html#ldap.INSUFFICIENT_ACCESS] – you need to do a non-anonymous bind before doing this

	
rename_s(dn: str [https://docs.python.org/3/library/stdtypes.html#str], newrdn: str [https://docs.python.org/3/library/stdtypes.html#str], newsuperior: str [https://docs.python.org/3/library/stdtypes.html#str] = None, delold: int [https://docs.python.org/3/library/functions.html#int] = 1, serverctrls: List [https://docs.python.org/3/library/typing.html#typing.List][LDAPControl [https://www.python-ldap.org/en/latest/reference/ldap-controls.html#ldap.controls.LDAPControl]] = None, clientctrls: List [https://docs.python.org/3/library/typing.html#typing.List][LDAPControl [https://www.python-ldap.org/en/latest/reference/ldap-controls.html#ldap.controls.LDAPControl]] = None) → None [https://docs.python.org/3/library/constants.html#None]

	Take dn (the DN of the entry whose RDN is to be changed, and
newrdn, the new RDN to give to the entry. The optional parameter
newsuperior is used to specify a new parent DN for moving an entry
in the tree (not all LDAP servers support this).

	Parameters

	
	dn – the dn of the object to rename

	newrdn – the new RDN

	Keyword Arguments

	
	newsuperior – the new basedn

	delold – if 1, delete the old entry after renaming, if 0, don’t.

	Raises

	
	ldap.NO_SUCH_OBJECT [https://www.python-ldap.org/en/latest/reference/ldap.html#ldap.NO_SUCH_OBJECT] – no object with dn of dn exists in our object store

	ldap.INSUFFICIENT_ACCESS [https://www.python-ldap.org/en/latest/reference/ldap.html#ldap.INSUFFICIENT_ACCESS] – you need to do a non-anonymous bind before doing this

	
unbind_s() → None [https://docs.python.org/3/library/constants.html#None]

	Unbind from the server.

This sets our bound_dn to None.

LDAP Server like objects

	
class ldap_faker.LDAPServerFactory

	This class registers ObjectStore objects to be used by
FakeLDAP.initialize() in constructing FakeLDAPObject objects.
ObjectStore objects are named registered here by LDAP uri (in reality,
any string).

You may do one of two things, but not both:

	Configure a default ObjectStore that will be used for all
ldap.initialize [https://www.python-ldap.org/en/latest/reference/ldap.html#ldap.initialize] calls regardless of uri

	Assign a specific ObjectStore for each uri you will be using
in your code.

Example

To register a default ObjectStore that will be used for every
uri passed to FakeLDAP.initialize:

>>> from ldap_faker import ObjectStore, LDAPServerFactory, FakeLDAP
>>> data = [...] # some LDAP records
>>> factory = LDAPServerFactory()
>>> store = ObjectStore(objects=data)
>>> factory.register(store)
>>> fake_ldap = FakeLDAP(factory)

Now any time your code does an ldap.initialize() to our patched
version of that function, it will get a a FakeLDAPObject configured
with a copy.deepcopy [https://docs.python.org/3/library/copy.html#copy.deepcopy] of the ObjectStore store, no matter what
uri it passes to ldap.initialize().

To register a different ObjectStores that will be used for specific
uris:

>>> from ldap_faker import ObjectStore, Servers
>>> data1 = [...] # some LDAP records
>>> factory = LDAPServerFactory()
>>> store1 = ObjectStore(objects=data1)
>>> factory.register(store1, uri='ldap://server1')
>>> data2 = [...] # some different LDAP records
>>> store2 = ObjectStore(objects=data2)
>>> factory.register(store2, uri='ldap://server2')
>>> fake_ldap = FakeLDAP(factory)

Now if your code does ldap.initialize('ldap://server1'), it will get
a FakeLDAPObject configured with a copy.deepcopy [https://docs.python.org/3/library/copy.html#copy.deepcopy] of the
ObjectStore object store1, while if it does
ldap.initialize('ldap://server2'), it will get a FakeLDAPObject
configured with a copy.deepcopy [https://docs.python.org/3/library/copy.html#copy.deepcopy] of the ObjectStore object store2.

	
load_from_file(filename: str [https://docs.python.org/3/library/stdtypes.html#str], uri: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][str [https://docs.python.org/3/library/stdtypes.html#str]] = None, tags: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][List [https://docs.python.org/3/library/typing.html#typing.List][str [https://docs.python.org/3/library/stdtypes.html#str]]] = None) → None [https://docs.python.org/3/library/constants.html#None]

	Given a file path to a JSON file with the objects for an ObjectStore,
create a new ObjectStore, load it with that JSON File and register it
with uri of uri.

	Parameters

	filename – the full path to our JSON file

	Keyword Arguments

	
	uri – the uri to assign to the ObjectStore we create

	tags – the list of tags to apply to the the ObjectStore

	Raises

	
	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] – raised if a default is already configured while trying to
 register the ObjectStore with a specific uri

	RuntimeWarning [https://docs.python.org/3/library/exceptions.html#RuntimeWarning] – raised if we try to overwrite an already registered object
 store with our new one

	
register(store: ObjectStore, uri: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][str [https://docs.python.org/3/library/stdtypes.html#str]] = None) → None [https://docs.python.org/3/library/constants.html#None]

	Register a new ObjectStore to be used as our fake LDAP server for when
we run our fake initialize function.

	Parameters

	store – a configured ObjectStore

	Keyword Arguments

	uri – the LDAP uri to associated with directory

	Raises

	
	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] – raised if a default is already configured while trying to
 register an ObjectStore with a specific uri

	RuntimeWarning [https://docs.python.org/3/library/exceptions.html#RuntimeWarning] – raised if we try to overwrite an already registered object
 store with a new one

	
get(uri: str [https://docs.python.org/3/library/stdtypes.html#str]) → ObjectStore

	Return a copy.deepcopy [https://docs.python.org/3/library/copy.html#copy.deepcopy] of the ObjectStore identified by uri.

	Parameters

	uri – use this uri to look up which ObjectStore to use

	Raises

	ldap.SERVER_DOWN [https://www.python-ldap.org/en/latest/reference/ldap.html#ldap.SERVER_DOWN] – no ObjectStore could be found for uri

	Returns

	A copy.deepcopy [https://docs.python.org/3/library/copy.html#copy.deepcopy] of the ObjectStore

	
class ldap_faker.ObjectStore(tags: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][List [https://docs.python.org/3/library/typing.html#typing.List][str [https://docs.python.org/3/library/stdtypes.html#str]]] = None)

	This class represents our actual simulated LDAP object store. Copies of this
will be used to configure FakeLDAPObject objects.

	
raw_objects: ldap_faker.types.RawLDAPObjectStore

	LDAP records as they would have been returned by python-ldap`

	
objects: ldap_faker.types.LDAPObjectStore

	LDAP records set up to make searching better

	
tags: List [https://docs.python.org/3/library/typing.html#typing.List][str [https://docs.python.org/3/library/stdtypes.html#str]]

	used when filtering hooks to apply

	
controls: Dict [https://docs.python.org/3/library/typing.html#typing.Dict][str [https://docs.python.org/3/library/stdtypes.html#str], Any [https://docs.python.org/3/library/typing.html#typing.Any]]

	can be used by hooks to store state

	
operational_attributes: Set [https://docs.python.org/3/library/typing.html#typing.Set][str [https://docs.python.org/3/library/stdtypes.html#str]]

	list of attributes that have to be specifically requested

	
convert_LDAPData(data: ldap_faker.types.LDAPData) → ldap_faker.types.CILDAPData

	Convert an incoming LDAPData` dict (``Dict[str, List[bytes]])
to a CILDAPData dict (CaseInsensitiveDict[str, List[str]]))

We need the data dict to have values as List[str] so that our
filtering works properly – ldap_filter.Filter.match only works with
strings, not bytes.

	Parameters

	data – the LDAPData dict to convert

	Returns

	The convered CILDAPData dict.

	
load_objects(filename: str [https://docs.python.org/3/library/stdtypes.html#str]) → None [https://docs.python.org/3/library/constants.html#None]

	Load a list of LDAP records stored as JSON from a file into our internal
database. Use this when
setting up the data you will use to run your tests.

Note

One caveat with this method vs.
ObjectStore.register_objects is that the records returned
by python-ldap are of type Tuple[str, Dict[str,
List[bytes]]] but JSON has no concept of bytes or tuple.
Thus we will expect the LDAP records in the file to have type
List[str, Dict[str, List[str]]] and we will convert them to
Tuple[str, Dict[str, List[bytes]]] before saving to
raw_objects

	Parameters

	filename – the path to the JSON file to load

	Raises

	
	ldap.ALREADY_EXISTS [https://www.python-ldap.org/en/latest/reference/ldap.html#ldap.ALREADY_EXISTS] – there is already an object in our object store
 with this dn

	ldap.INVALID_DN_SYNTAX [https://www.python-ldap.org/en/latest/reference/ldap.html#ldap.INVALID_DN_SYNTAX] – one of the object DNs is not well formed

	
register_objects(objs: List [https://docs.python.org/3/library/typing.html#typing.List][ldap_faker.types.LDAPRecord]) → None [https://docs.python.org/3/library/constants.html#None]

	Load a list of LDAP records into our internal database. Use this when
setting up the data you will use to run your tests. Each record in the
list should be in exactly the format that python-ldap itself returns: a
2-tuple with dn as the first element and the attribute/value dict as the
second element.

Example

Adding a several PosixAccount objects:

>>> obj = [
 (
 'uid=user,ou=mydept,o=myorg,c=country',
 {
 'cn': [b'Firstname User1'],
 'uid': [b'user'],
 'uidNumber': [b'123'],
 'gidNumber': [b'456'],
 'homeDirectory': [b'/home/user'],
 'loginShell': [b'/bin/bash'],
 'userPassword': [b'the password'],
 'objectclass': [b'posixAccount', b'top']
 }
),
 (
 'uid=user2,ou=mydept,o=myorg,c=country',
 {
 'cn': [b'Firstname User2'],
 'uid': [b'user2'],
 'uidNumber': [b'124'],
 'gidNumber': [b'457'],
 'homeDirectory': [b'/home/user1'],
 'loginShell': [b'/bin/bash'],
 'userPassword': [b'the password'],
 'objectclass': [b'posixAccount', b'top']
 }
)
]
>>> directory = ObjectStore()
>>> directory.register_objects(obj)

	Parameters

	objs – A list of LDAP records as they would have been returned by
ldap.ldapobject.LDAPObject.search_s(). These are 2-tuples, where
the first element is the dn (a str) and the second element is
a dict where the keys are str and the values are lists of
bytes.

	Raises

	
	ldap.ALREADY_EXISTS [https://www.python-ldap.org/en/latest/reference/ldap.html#ldap.ALREADY_EXISTS] – there is already an object in our object store
 with this dn

	ldap.INVALID_DN_SYNTAX [https://www.python-ldap.org/en/latest/reference/ldap.html#ldap.INVALID_DN_SYNTAX] – one of the object DNs is not well formed

	TypeError [https://docs.python.org/3/library/exceptions.html#TypeError] – the LDAPData portion for an object was not of type Dict[str, List[bytes]]

	
register_object(obj: ldap_faker.types.LDAPRecord) → None [https://docs.python.org/3/library/constants.html#None]

	Add an LDAP record our internal database. Use this to add a single
record when setting up the data you will use to run your tests. The
data should be in exactly the format that python-ldap itself returns: a
2-tuple with dn as the first element and the attribute/value dict as the
second element.

Example

Adding a PosixAccount object:

>>> obj = (
 'uid=user,ou=mydept,o=myorg,c=country',
 {
 'cn': [b'Firstname Lastname'],
 'uid': [b'user'],
 'uidNumber': [b'123'],
 'gidNumber': [b'456'],
 'homeDirectory': [b'/home/user'],
 'loginShell': [b'/bin/bash'],
 'userPassword': [b'the password']
 'objectclass': [b'posixAccount', b'top']
 }
)
>>> directory = ObjectStore()
>>> directory.register_object(obj)

	Parameters

	obj – An LDAP record as it would have been returned by
ldap.ldapobject.LDAPObject.search_s(). This is a 2-tuple, where
the first element is the dn (a str) and the second element is
a dict where the keys are str and the values are lists of
bytes.

	Raises

	
	ldap.ALREADY_EXISTS [https://www.python-ldap.org/en/latest/reference/ldap.html#ldap.ALREADY_EXISTS] – there is already an object in our object store
 with this dn

	ldap.INVALID_DN_SYNTAX [https://www.python-ldap.org/en/latest/reference/ldap.html#ldap.INVALID_DN_SYNTAX] – the DN is not well formed

	TypeError [https://docs.python.org/3/library/exceptions.html#TypeError] – the LDAPData portion was not of type Dict[str, List[bytes]]

	
property count

	

	
exists(dn: str [https://docs.python.org/3/library/stdtypes.html#str], validate: bool [https://docs.python.org/3/library/functions.html#bool] = True) → bool [https://docs.python.org/3/library/functions.html#bool]

	Test whether an object with dn dn exists.

	Parameters

	dn – the dn of the object to look for

	Keyword Arguments

	validate – if True, validate that dn is a valid dn

	Returns

	True if the object exists, False otherwise.

	
get(dn: str [https://docs.python.org/3/library/stdtypes.html#str]) → ldap_faker.types.LDAPData

	Return all data for an object from our object store.

	Parameters

	dn – the dn of the object to copy.

	Raises

	ldap.NO_SUCH_OBJECT [https://www.python-ldap.org/en/latest/reference/ldap.html#ldap.NO_SUCH_OBJECT] – no object with dn of dn exists in our object store

	Returns

	The data for an LDAP object

	
copy(dn: str [https://docs.python.org/3/library/stdtypes.html#str]) → ldap_faker.types.LDAPData

	Return a copy of the data for an object from our object store.

	Parameters

	dn – the dn of the object to copy.

	Raises

	ldap.NO_SUCH_OBJECT [https://www.python-ldap.org/en/latest/reference/ldap.html#ldap.NO_SUCH_OBJECT] – no object with dn of dn exists in our object store

	Returns

	The data for an LDAP object

	
set(dn: str [https://docs.python.org/3/library/stdtypes.html#str], data: ldap_faker.types.LDAPData, bind_dn: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][str [https://docs.python.org/3/library/stdtypes.html#str]] = None) → None [https://docs.python.org/3/library/constants.html#None]

	Add or update data for the object with dn dn.

	Parameters

	
	dn – the dn of the object to copy.

	data – the dict of data for this object

	Keyword Arguments

	bind_dn – the dn of the user doing the set, if any

	Raises

	
	ldap.INVALID_DN_SYNTAX [https://www.python-ldap.org/en/latest/reference/ldap.html#ldap.INVALID_DN_SYNTAX] – the DN is not well formed

	TypeError [https://docs.python.org/3/library/exceptions.html#TypeError] – the LDAPData portion was not of type Dict[str, List[bytes]]

	
update(dn: str [https://docs.python.org/3/library/stdtypes.html#str], modlist: ldap_faker.types.ModList, bind_dn: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][str [https://docs.python.org/3/library/stdtypes.html#str]] = None) → None [https://docs.python.org/3/library/constants.html#None]

	Modify the object with dn of dn using the modlist modlist.

Each element in the list modlist should be a tuple of the form
(mod_op: int, mod_type: str, mod_vals: Union[bytes, List[bytes]]), where
mod_op indicates the operation (one of ldap.MOD_ADD,
ldap.MOD_DELETE, or ldap.MOD_REPLACE, mod_type
is a string indicating the attribute type name, and mod_vals is
either a bytes value or a list of bytes values to add, delete or
replace respectively. For the delete operation, mod_vals may be None
indicating that all attributes are to be deleted.

Note

ldap.modlist.modifyModlist [https://www.python-ldap.org/en/latest/reference/ldap-modlist.html#ldap.modlist.modifyModlist] MAY be your friend here for
generating modlists. Do read the note in those docs about
ldap.MOD_DELETE / ldap.MOD_ADD vs.
ldap.MOD_REPLACE to see whether that will affect you poorly.

Example

Here is an example of constructing a modlist for modify_s:

>>> import ldap
>>> modlist = [
 (ldap.MOD_ADD, 'mail', [b'user@example.com', b'user+foo@example.com']),
 (ldap.MOD_REPLACE, 'cn', [b'My Name']),
 (ldap.MOD_DELETE, 'gecos', None)
]

	Parameters

	
	dn – the dn of the object to delete

	modlist – a modlist suitable for modify_s

	Keyword Arguments

	bind_dn – the dn of the user doing the update, if any

	Raises

	
	ldap.INVALID_DN_SYNTAX [https://www.python-ldap.org/en/latest/reference/ldap.html#ldap.INVALID_DN_SYNTAX] – the dn was not well-formed

	ldap.NO_SUCH_OBJECT [https://www.python-ldap.org/en/latest/reference/ldap.html#ldap.NO_SUCH_OBJECT] – no object with dn of dn exists in our
 object store

	ldap.TYPE_OR_VALUE_EXISTS [https://www.python-ldap.org/en/latest/reference/ldap.html#ldap.TYPE_OR_VALUE_EXISTS] – you tried to add an value to an
 attribute, but it was already in the value list

	ldap.INSUFFICIENT_ACCESS [https://www.python-ldap.org/en/latest/reference/ldap.html#ldap.INSUFFICIENT_ACCESS] – you need to do a non-anonymous bind before
 doing this

	
create(dn: str [https://docs.python.org/3/library/stdtypes.html#str], modlist: ldap_faker.types.AddModList, bind_dn: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][str [https://docs.python.org/3/library/stdtypes.html#str]] = None) → None [https://docs.python.org/3/library/constants.html#None]

	Create an object in our store with dn of dn.

modlist is similar the one passed to modify_s, except
that the operation integer is omitted from the tuples in modlist.
You might want to look into sub-module ldap.modlist for generating the
modlist.

Example

Here is an example of constructing a modlist for create:

>>> modlist = [
 ('uid', [b'user']),
 ('gidNumber', [b'1000']),
 ('uidNumber', [b'1000']),
 ('loginShell', [b'/bin/bash']),
 ('homeDirectory', [b'/home/user']),
 ('userPassword', [b'the password']),
 ('cn', [b'My Name']),
 ('objectClass', [b'top', b'posixAccount']),
]

	Parameters

	
	dn – the dn of the object to add

	modlist – the add modlist

	Keyword Arguments

	bind_dn – the dn of the user doing the create, if any

	Raises

	
	ldap.INVALID_DN_SYNTAX [https://www.python-ldap.org/en/latest/reference/ldap.html#ldap.INVALID_DN_SYNTAX] – the dn was not well-formed

	ldap.ALREADY_EXISTS [https://www.python-ldap.org/en/latest/reference/ldap.html#ldap.ALREADY_EXISTS] – an object with dn of dn already exists in our object store

	ldap.INSUFFICIENT_ACCESS [https://www.python-ldap.org/en/latest/reference/ldap.html#ldap.INSUFFICIENT_ACCESS] – you need to do a non-anonymous bind before doing this

	
delete(dn: str [https://docs.python.org/3/library/stdtypes.html#str], bind_dn: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][str [https://docs.python.org/3/library/stdtypes.html#str]] = None) → None [https://docs.python.org/3/library/constants.html#None]

	Delete an object from our objects directory.

	Parameters

	dn – the dn of the object to delete

	Keyword Arguments

	bind_dn – the dn of the user doing the delete, if any

	Raises

	ldap.INVALID_DN_SYNTAX [https://www.python-ldap.org/en/latest/reference/ldap.html#ldap.INVALID_DN_SYNTAX] – the dn was not well-formed

	
search_base(base: str [https://docs.python.org/3/library/stdtypes.html#str], filterstr: str [https://docs.python.org/3/library/stdtypes.html#str], attrlist: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][List [https://docs.python.org/3/library/typing.html#typing.List][str [https://docs.python.org/3/library/stdtypes.html#str]]] = None) → ldap_faker.types.LDAPSearchResult

	Do a ldap.SCOPE_BASE search. Return the requested attributes
of the object in our object store with dn of base that also
matches filterstr.

Note

We return a copy.deepcopy [https://docs.python.org/3/library/copy.html#copy.deepcopy] of the object, not the actual
object. This ensures that if the caller modifies the object they
don’t update the objects in us unintentionally.

Note

Some attributes are “operational” and are not returned by default
They must be named specifically if you want them. Example:

>>> store.search_base('thebasedn', '(objectclass=*)', ['*', 'createTimestamp'])

	Parameters

	
	base – the dn of the object to return

	filterstr – the ldap filter string

	Keyword Arguments

	attrlist – the list of attributes to return for each object

	Raises

	
	ldap.INVALID_DN_SYNTAX [https://www.python-ldap.org/en/latest/reference/ldap.html#ldap.INVALID_DN_SYNTAX] – base was not a well-formed DN

	ldap.FILTER_ERROR [https://www.python-ldap.org/en/latest/reference/ldap.html#ldap.FILTER_ERROR] – filterstr is has bad filter syntax

	ldap.NO_SUCH_OBJECT [https://www.python-ldap.org/en/latest/reference/ldap.html#ldap.NO_SUCH_OBJECT] – no object with dn of base exists in the object store

	Returns

	A list with one element – the object with dn of base.

	
search_onelevel(base: str [https://docs.python.org/3/library/stdtypes.html#str], filterstr: str [https://docs.python.org/3/library/stdtypes.html#str], attrlist: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][List [https://docs.python.org/3/library/typing.html#typing.List][str [https://docs.python.org/3/library/stdtypes.html#str]]] = None) → ldap_faker.types.LDAPSearchResult

	Do a ldap.SCOPE_ONELEVEL search, for objects directly under
basedn base that match filterstr.

Note

We return a copy.deepcopy [https://docs.python.org/3/library/copy.html#copy.deepcopy] of each object, not the actual
object. This ensures that if the caller modifies the object they
don’t update the objects in us unintentionally.

	Parameters

	
	base – the dn of the object to return

	filterstr – the ldap filter string

	Keyword Arguments

	attrlist – the list of attributes to return for each object

	Raises

	
	ldap.INVALID_DN_SYNTAX [https://www.python-ldap.org/en/latest/reference/ldap.html#ldap.INVALID_DN_SYNTAX] – base was not a well-formed DN

	ldap.FILTER_ERROR [https://www.python-ldap.org/en/latest/reference/ldap.html#ldap.FILTER_ERROR] – filterstr is has bad filter syntax

	Returns

	A list of LDAP objects – 2-tuples of (dn, data).

	
search_subtree(base: str [https://docs.python.org/3/library/stdtypes.html#str], filterstr: str [https://docs.python.org/3/library/stdtypes.html#str], attrlist: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][List [https://docs.python.org/3/library/typing.html#typing.List][str [https://docs.python.org/3/library/stdtypes.html#str]]] = None, include_operational_attributes: bool [https://docs.python.org/3/library/functions.html#bool] = False) → ldap_faker.types.LDAPSearchResult

	Do a ldap.SCOPE_SUBTREE search, for objects under basedn
base that match filterstr.

	Parameters

	
	base – the dn of the object to return

	filterstr – the ldap filter string

Note

We return a copy.deepcopy [https://docs.python.org/3/library/copy.html#copy.deepcopy] of each object, not the actual
object. This ensures that if the caller modifies the object they
don’t update the objects in us unintentionally.

	Keyword Arguments

	
	attrlist – the list of attributes to return for each object

	include_operational_attributes – include all operational attributes even
if they are not named in attrlist

	Raises

	
	ldap.INVALID_DN_SYNTAX [https://www.python-ldap.org/en/latest/reference/ldap.html#ldap.INVALID_DN_SYNTAX] – base was not a well-formed DN

	ldap.FILTER_ERROR [https://www.python-ldap.org/en/latest/reference/ldap.html#ldap.FILTER_ERROR] – filterstr is has bad filter syntax

	Returns

	A list of LDAP objects – 2-tuples of (dn, data).

	
class ldap_faker.OptionStore

	We use this to store options set via set_option.

	
set(option: int [https://docs.python.org/3/library/functions.html#int], invalue: ldap_faker.types.LDAPOptionValue) → None [https://docs.python.org/3/library/constants.html#None]

	Set an option.

	Parameters

	
	option – the code for the option (e.g. ldap.OPT_X_TLS_NEWCTX [https://www.python-ldap.org/en/latest/reference/ldap.html#ldap.OPT_X_TLS_NEWCTX])

	value – the value we want the option to be set to

	Raises

	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] – option is not a valid python-ldap option

	
get(option: int [https://docs.python.org/3/library/functions.html#int]) → ldap_faker.types.LDAPOptionValue

	Get the value for a previosly set option that was set via OptionStore.set.

	Parameters

	option – the code for the option (e.g. ldap.OPT_X_TLS_NEWCTX [https://www.python-ldap.org/en/latest/reference/ldap.html#ldap.OPT_X_TLS_NEWCTX])

	Raises

	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] – option is not a valid python-ldap option

	Returns

	The value for the option, or the default.

Hook management

	
ldap_faker.hooks = <ldap_faker.hooks.HookRegistry object>

	

	
class ldap_faker.Hook(func: Callable, tags: List[str [https://docs.python.org/3/library/stdtypes.html#str]])

	
	
func: Callable [https://docs.python.org/3/library/typing.html#typing.Callable]

	

	
tags: List [https://docs.python.org/3/library/typing.html#typing.List][str [https://docs.python.org/3/library/stdtypes.html#str]]

	

	
class ldap_faker.HookDefinition(name: str [https://docs.python.org/3/library/stdtypes.html#str], signature: str [https://docs.python.org/3/library/stdtypes.html#str])

	The definition for a hook. This is comprised of a name and a signature.

Example

>>> hook_def = HookDefinition(
 name='pre_save",
 signature="Callable[[ObjectStore, LDAPRecord], None]
)
>>> hook_def.name
"pre_save"
>>> hook_def.signature
"Callable[[ObjectStore, LDAPRecord], None]"

	
name

	the name of the hook, e.g. “pre_save”

	Type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
signature

	the python type annotation signature that the hook should
implement, e.g. “Callable[[ObjectStore, LDAPRecord], None]”

	Type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
name: str [https://docs.python.org/3/library/stdtypes.html#str]

	

	
signature: str [https://docs.python.org/3/library/stdtypes.html#str]

	

	
class ldap_faker.HookRegistry

	
	
property definitions: List [https://docs.python.org/3/library/typing.html#typing.List][HookDefinition]

	Return a list of known hooks definitions as

	
register_hook_definition(hook_name: str [https://docs.python.org/3/library/stdtypes.html#str], signature: str [https://docs.python.org/3/library/stdtypes.html#str]) → None [https://docs.python.org/3/library/constants.html#None]

	Register a hook definition. Hook definitions define what hooks exist, and what their
function signature must be.

Example

>>> hooks = HookRegistry()
>>> hooks.register_definition('pre_set', 'Callable[[ObjectStore, LDAPRecord], None]')

	Parameters

	
	hook_name – the name of the hook

	signature – A string in Python type annotation format describing the
signature the hook must have

	
register_hook(hook_name: str [https://docs.python.org/3/library/stdtypes.html#str], func: Callable [https://docs.python.org/3/library/typing.html#typing.Callable], tags: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][List [https://docs.python.org/3/library/typing.html#typing.List][str [https://docs.python.org/3/library/stdtypes.html#str]]] = None) → None [https://docs.python.org/3/library/constants.html#None]

	Register a hook for this object store. Hooks are functions with this signature:

def myhook(store: ObjectStore, record: LDAPRecord) -> None:

Use hooks to implement side-effects on select ObjectStore methods.

Example

To register a hook that updates a an attribute named ``modifyTimestamp`
before saving a record to the object store, you could define the hook
like so:

	def update_modifyTimestamp(store: ObjectStore, record: LDAPRecord) -> None:
	record[1][‘modifyTimestamp’] = datetime.datetime.utcnow().strftime(‘%Y%m%d%H%M%SZ’)

and register it as a pre_modify method like so:

>>> store = ObjectStore()
>>> store.register_hook('pre_set', update_modifyTimestamp)

Note

Hooks for a particular hook_name are applied in the order they are registered.

	Parameters

	
	hook_name – the name of the known hook to which register this func

	func – the hook function

	Raises

	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] – hook_name is not a known hook

	
get(hook_name: str [https://docs.python.org/3/library/stdtypes.html#str], tags: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][List [https://docs.python.org/3/library/typing.html#typing.List][str [https://docs.python.org/3/library/stdtypes.html#str]]] = None) → List [https://docs.python.org/3/library/typing.html#typing.List][Callable [https://docs.python.org/3/library/typing.html#typing.Callable]]

	Get a list of hook callables for the hook named by name, possibly
filtering hooks by tag.

Tag filtering rules:

	If a hook has no tags associated with it, it always applies.

	Otherwise, if at least one of the hooks tags are present in tags,
the hook applies.

	Parameters

	hook_name – the name of the hook for which to return functions

	Keyword Arguments

	tags – if provided, filter the available hook functions to include
only those with tags listed in tags

	Raises

	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] – there is no known hook with name hook_name

	Returns

	A list of callables.

Type Aliases

	
ldap_faker.types.LDAPOptionValue

	The central part of internal API.

This represents a generic version of type ‘origin’ with type arguments ‘params’.
There are two kind of these aliases: user defined and special. The special ones
are wrappers around builtin collections and ABCs in collections.abc. These must
have ‘name’ always set. If ‘inst’ is False, then the alias can’t be instantiated,
this is used by e.g. typing.List and typing.Dict.

alias of Union [https://docs.python.org/3/library/typing.html#typing.Union][int [https://docs.python.org/3/library/functions.html#int], str [https://docs.python.org/3/library/stdtypes.html#str]]

	
ldap_faker.types.LDAPData

	The central part of internal API.

This represents a generic version of type ‘origin’ with type arguments ‘params’.
There are two kind of these aliases: user defined and special. The special ones
are wrappers around builtin collections and ABCs in collections.abc. These must
have ‘name’ always set. If ‘inst’ is False, then the alias can’t be instantiated,
this is used by e.g. typing.List and typing.Dict.

alias of Dict [https://docs.python.org/3/library/typing.html#typing.Dict][str [https://docs.python.org/3/library/stdtypes.html#str], List [https://docs.python.org/3/library/typing.html#typing.List][bytes [https://docs.python.org/3/library/stdtypes.html#bytes]]]

	
ldap_faker.types.LDAPRecord

	The central part of internal API.

This represents a generic version of type ‘origin’ with type arguments ‘params’.
There are two kind of these aliases: user defined and special. The special ones
are wrappers around builtin collections and ABCs in collections.abc. These must
have ‘name’ always set. If ‘inst’ is False, then the alias can’t be instantiated,
this is used by e.g. typing.List and typing.Dict.

alias of Tuple[str [https://docs.python.org/3/library/stdtypes.html#str], Dict [https://docs.python.org/3/library/typing.html#typing.Dict][str [https://docs.python.org/3/library/stdtypes.html#str], List [https://docs.python.org/3/library/typing.html#typing.List][bytes [https://docs.python.org/3/library/stdtypes.html#bytes]]]]

	
ldap_faker.types.LDAPSearchResult

	The central part of internal API.

This represents a generic version of type ‘origin’ with type arguments ‘params’.
There are two kind of these aliases: user defined and special. The special ones
are wrappers around builtin collections and ABCs in collections.abc. These must
have ‘name’ always set. If ‘inst’ is False, then the alias can’t be instantiated,
this is used by e.g. typing.List and typing.Dict.

alias of List [https://docs.python.org/3/library/typing.html#typing.List][Tuple[str [https://docs.python.org/3/library/stdtypes.html#str], Dict [https://docs.python.org/3/library/typing.html#typing.Dict][str [https://docs.python.org/3/library/stdtypes.html#str], List [https://docs.python.org/3/library/typing.html#typing.List][bytes [https://docs.python.org/3/library/stdtypes.html#bytes]]]]]

	
ldap_faker.types.ModList

	The central part of internal API.

This represents a generic version of type ‘origin’ with type arguments ‘params’.
There are two kind of these aliases: user defined and special. The special ones
are wrappers around builtin collections and ABCs in collections.abc. These must
have ‘name’ always set. If ‘inst’ is False, then the alias can’t be instantiated,
this is used by e.g. typing.List and typing.Dict.

alias of List [https://docs.python.org/3/library/typing.html#typing.List][Tuple[int [https://docs.python.org/3/library/functions.html#int], str [https://docs.python.org/3/library/stdtypes.html#str], List [https://docs.python.org/3/library/typing.html#typing.List][bytes [https://docs.python.org/3/library/stdtypes.html#bytes]]]]

	
ldap_faker.types.AddModList

	The central part of internal API.

This represents a generic version of type ‘origin’ with type arguments ‘params’.
There are two kind of these aliases: user defined and special. The special ones
are wrappers around builtin collections and ABCs in collections.abc. These must
have ‘name’ always set. If ‘inst’ is False, then the alias can’t be instantiated,
this is used by e.g. typing.List and typing.Dict.

alias of List [https://docs.python.org/3/library/typing.html#typing.List][Tuple[str [https://docs.python.org/3/library/stdtypes.html#str], List [https://docs.python.org/3/library/typing.html#typing.List][bytes [https://docs.python.org/3/library/stdtypes.html#bytes]]]]

	
ldap_faker.types.LDAPFixtureList

	The central part of internal API.

This represents a generic version of type ‘origin’ with type arguments ‘params’.
There are two kind of these aliases: user defined and special. The special ones
are wrappers around builtin collections and ABCs in collections.abc. These must
have ‘name’ always set. If ‘inst’ is False, then the alias can’t be instantiated,
this is used by e.g. typing.List and typing.Dict.

alias of Union [https://docs.python.org/3/library/typing.html#typing.Union][str [https://docs.python.org/3/library/stdtypes.html#str], Tuple[str [https://docs.python.org/3/library/stdtypes.html#str], List [https://docs.python.org/3/library/typing.html#typing.List][str [https://docs.python.org/3/library/stdtypes.html#str]]], List [https://docs.python.org/3/library/typing.html#typing.List][Tuple[str [https://docs.python.org/3/library/stdtypes.html#str], str [https://docs.python.org/3/library/stdtypes.html#str], List [https://docs.python.org/3/library/typing.html#typing.List][str [https://docs.python.org/3/library/stdtypes.html#str]]]]]

 Python Module Index

 l

 		 	

 		
 l	

 	
 	
 ldap_faker	

Index

 A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | L
 | M
 | N
 | O
 | P
 | R
 | S
 | T
 | U
 | W

A

 	
 	add_s() (ldap_faker.FakeLDAPObject method)

 	AddModList (in module ldap_faker.types)

 	api_name (ldap_faker.LDAPCallRecord attribute)

 	args (ldap_faker.LDAPCallRecord attribute)

 	
 	assertGlobalFunctionCalled() (ldap_faker.LDAPFakerMixin method)

 	assertGlobalOptionSet() (ldap_faker.LDAPFakerMixin method)

 	assertLDAPConnectionMethodCalled() (ldap_faker.LDAPFakerMixin method)

 	assertLDAPConnectionMethodCalledAfter() (ldap_faker.LDAPFakerMixin method)

 	assertLDAPConnectionOptionSet() (ldap_faker.LDAPFakerMixin method)

B

 	
 	bound_dn (ldap_faker.FakeLDAPObject attribute)

C

 	
 	CallHistory (class in ldap_faker)

 	calls (ldap_faker.CallHistory property)

 	(ldap_faker.FakeLDAP attribute)

 	(ldap_faker.FakeLDAPObject attribute)

 	compare_s() (ldap_faker.FakeLDAPObject method)

 	connection_calls() (ldap_faker.FakeLDAP method)

 	
 	connections (ldap_faker.FakeLDAP attribute)

 	controls (ldap_faker.ObjectStore attribute)

 	convert_LDAPData() (ldap_faker.ObjectStore method)

 	copy() (ldap_faker.ObjectStore method)

 	count (ldap_faker.ObjectStore property)

 	create() (ldap_faker.ObjectStore method)

D

 	
 	definitions (ldap_faker.HookRegistry property)

 	delete() (ldap_faker.ObjectStore method)

 	
 	delete_s() (ldap_faker.FakeLDAPObject method)

 	deref (ldap_faker.FakeLDAPObject attribute)

E

 	
 	exists() (ldap_faker.ObjectStore method)

F

 	
 	fake_ldap (ldap_faker.LDAPFakerMixin attribute)

 	FakeLDAP (class in ldap_faker)

 	
 	FakeLDAPObject (class in ldap_faker)

 	filter_calls() (ldap_faker.CallHistory method)

 	func (ldap_faker.Hook attribute)

G

 	
 	get() (ldap_faker.HookRegistry method)

 	(ldap_faker.LDAPServerFactory method)

 	(ldap_faker.ObjectStore method)

 	(ldap_faker.OptionStore method)

 	
 	get_connections() (ldap_faker.FakeLDAP method)

 	(ldap_faker.LDAPFakerMixin method)

 	get_option() (ldap_faker.FakeLDAP method)

 	(ldap_faker.FakeLDAPObject method)

H

 	
 	has_connection() (ldap_faker.FakeLDAP method)

 	Hook (class in ldap_faker)

 	HookDefinition (class in ldap_faker)

 	
 	HookRegistry (class in ldap_faker)

 	hooks (in module ldap_faker)

 	hostname (ldap_faker.FakeLDAPObject attribute)

I

 	
 	initialize() (ldap_faker.FakeLDAP method)

L

 	
 	last_connection() (ldap_faker.LDAPFakerMixin method)

 	
 ldap_faker

 	module

 	ldap_fixtures (ldap_faker.LDAPFakerMixin attribute)

 	ldap_modules (ldap_faker.LDAPFakerMixin attribute)

 	LDAPCallRecord (class in ldap_faker)

 	LDAPData (in module ldap_faker.types)

 	LDAPFakerMixin (class in ldap_faker)

 	
 	LDAPFixtureList (in module ldap_faker.types)

 	LDAPOptionValue (in module ldap_faker.types)

 	LDAPRecord (in module ldap_faker.types)

 	LDAPSearchResult (in module ldap_faker.types)

 	LDAPServerFactory (class in ldap_faker)

 	load_from_file() (ldap_faker.LDAPServerFactory method)

 	load_objects() (ldap_faker.ObjectStore method)

 	load_servers() (ldap_faker.LDAPFakerMixin class method)

M

 	
 	modify_s() (ldap_faker.FakeLDAPObject method)

 	ModList (in module ldap_faker.types)

 	
 	
 module

 	ldap_faker

N

 	
 	name (ldap_faker.HookDefinition attribute), [1]

 	
 	names (ldap_faker.CallHistory property)

 	network_timeout (ldap_faker.FakeLDAPObject attribute)

O

 	
 	objects (ldap_faker.ObjectStore attribute)

 	ObjectStore (class in ldap_faker)

 	operational_attributes (ldap_faker.ObjectStore attribute)

 	
 	options (ldap_faker.FakeLDAP attribute)

 	(ldap_faker.FakeLDAPObject attribute)

 	OptionStore (class in ldap_faker)

P

 	
 	protocol_version (ldap_faker.FakeLDAPObject attribute)

R

 	
 	raw_objects (ldap_faker.ObjectStore attribute)

 	register() (ldap_faker.LDAPServerFactory method)

 	register_hook() (ldap_faker.HookRegistry method)

 	register_hook_definition() (ldap_faker.HookRegistry method)

 	
 	register_object() (ldap_faker.ObjectStore method)

 	register_objects() (ldap_faker.ObjectStore method)

 	rename_s() (ldap_faker.FakeLDAPObject method)

 	resolve_file() (ldap_faker.LDAPFakerMixin class method)

 	result3() (ldap_faker.FakeLDAPObject method)

S

 	
 	search_base() (ldap_faker.ObjectStore method)

 	search_ext() (ldap_faker.FakeLDAPObject method)

 	search_onelevel() (ldap_faker.ObjectStore method)

 	search_s() (ldap_faker.FakeLDAPObject method)

 	search_subtree() (ldap_faker.ObjectStore method)

 	server_factory (ldap_faker.LDAPFakerMixin attribute)

 	set() (ldap_faker.ObjectStore method)

 	(ldap_faker.OptionStore method)

 	
 	set_option() (ldap_faker.FakeLDAP method)

 	(ldap_faker.FakeLDAPObject method)

 	setUp() (ldap_faker.LDAPFakerMixin method)

 	setUpClass() (ldap_faker.LDAPFakerMixin class method)

 	signature (ldap_faker.HookDefinition attribute), [1]

 	simple_bind_s() (ldap_faker.FakeLDAPObject method)

 	sizelimit (ldap_faker.FakeLDAPObject attribute)

 	start_tls_s() (ldap_faker.FakeLDAPObject method)

 	store (ldap_faker.FakeLDAPObject attribute)

T

 	
 	tags (ldap_faker.Hook attribute)

 	(ldap_faker.ObjectStore attribute)

 	tearDown() (ldap_faker.LDAPFakerMixin method)

 	
 	tearDownClass() (ldap_faker.LDAPFakerMixin class method)

 	timelimit (ldap_faker.FakeLDAPObject attribute)

 	timeout (ldap_faker.FakeLDAPObject attribute)

 	tls_enabled (ldap_faker.FakeLDAPObject attribute)

U

 	
 	unbind_s() (ldap_faker.FakeLDAPObject method)

 	
 	update() (ldap_faker.ObjectStore method)

 	uri (ldap_faker.FakeLDAPObject attribute)

W

 	
 	whoami_s() (ldap_faker.FakeLDAPObject method)

 nav.xhtml

 Table of Contents

 		
 python-ldap-faker

 		
 Faking LDAP servers

 		
 Structure of LDAP records

 		
 LDAPServerFactory

 		
 ObjectStore

 		
 Data Types for ObjectStore.register_object(s)

 		
 File format for ObjectStore.load_objects

 		
 Specific LDAP implementations supported

 		
 Redhat Directory Server/389

 		
 Features supported

 		
 Authentication and Authorization

 		
 Authorization within python-ldap-faker

 		
 Anonymous binds

 		
 Authenticated binds

 		
 Using ldap_faker with unittest

 		
 Configuring your LDAPFakerMixin TestCase

 		
 LDAPFakerMixin.ldap_modules

 		
 LDAPFakerMixin.ldap_fixtures

 		
 Test isolation

 		
 Test support offered by LDAPFakerMixin

 		
 Hooks: modifying ObjectStore behavior

 		
 Registering hooks

 		
 Tagged hooks

 		
 Tagging ObjectClass instances in LDAPFakerMixin

 		
 Available hooks

 		
 Developer Interface

 		
 Unittest Support

 		
 LDAPFakerMixin

 		
 LDAPCallRecord

 		
 CallHistory

 		
 python-ldap replacements

 		
 FakeLDAP

 		
 FakeLDAPObject

 		
 LDAP Server like objects

 		
 LDAPServerFactory

 		
 ObjectStore

 		
 OptionStore

 		
 Hook management

 		
 hooks

 		
 Hook

 		
 HookDefinition

 		
 HookRegistry

 		
 Type Aliases

 		
 LDAPOptionValue

 		
 LDAPData

 		
 LDAPRecord

 		
 LDAPSearchResult

 		
 ModList

 		
 AddModList

 		
 LDAPFixtureList

_static/file.png

_static/minus.png

_static/plus.png

