
python-ldap-faker
Release 1.1.0

Caltech IMSS ADS

Nov 22, 2022

CONTENTS

1 Installation 3

2 Features: 5

3 Quickstart 7
3.1 Faking LDAP servers . 9
3.2 Specific LDAP implementations supported . 11
3.3 Authentication and Authorization . 13
3.4 Using ldap_faker with unittest . 14
3.5 Hooks: modifying ObjectStore behavior . 16
3.6 Developer Interface . 21

Python Module Index 47

Index 49

i

ii

python-ldap-faker, Release 1.1.0

Current version is 1.1.0.

This package provides a fake python-ldap interface that can be used for automated testing of code that uses
python-ldap. With python-ldap-faker you will be able to test your LDAP code without having to stand up an
actual LDAP server, and also without having to use complicated unittest.mock.patch and unittest.mock.Mock
setups.

When writing tests for code that talks to an LDAP server with python-ldap, we want to be able to control
python-ldap interactions in our tests to ensure that our own code works properly. This may include populating the
LDAP server with fixture data, monitoring if, when and how python-ldap calls are made by our code, and ensuring
our code handles python-ldap exceptions properly.

Managing an actual LDAP server during our tests is usually out of the question, so typically we revert to patching the
python-ldap code to use mock objects instead, but this is very verbose and can lead to test code errors in practice.

This package provides replacement ldap.initialize, ldap.set_option and ldap.get_option functions, as well
as a test-instrumented ldap.ldap.ldapobject.LDAPObject replacement.

CONTENTS 1

https://docs.python.org/3/library/unittest.mock.html#unittest.mock.patch
https://docs.python.org/3/library/unittest.mock.html#unittest.mock.Mock
https://www.python-ldap.org/en/latest/reference/ldap.html#ldap.initialize
https://www.python-ldap.org/en/latest/reference/ldap.html#ldap.set_option
https://www.python-ldap.org/en/latest/reference/ldap.html#ldap.get_option
https://www.python-ldap.org/en/latest/reference/ldap.html#ldap.ldap.ldapobject.LDAPObject

python-ldap-faker, Release 1.1.0

2 CONTENTS

CHAPTER

ONE

INSTALLATION

To install from PyPI:

pip install python-ldap-faker

If you want, you can run the tests:

python -m unittest discover

3

python-ldap-faker, Release 1.1.0

4 Chapter 1. Installation

CHAPTER

TWO

FEATURES:

• These python-ldap global functions are faked:

– ldap.initialize

– ldap.set_option

– ldap.get_option

• These ldap.ldapobject.LDAPObject methods are faked:

– set_option

– get_option

– start_tls_s

– simple_bind_s

– unbind_s

– search_s

– search_ext

– result3

– compare_s

– add_s

– modify_s

– rename_s

– delete_s

• For search_ext and search_s, your filter string will be validated as a valid LDAP filter, and your filter will be
applied directly to your objects in our fake “server” to generate the result list. No canned searches!

• Inspect your call history for all calls (name, arguments), and test the order in which they were made

• Simulate multiple fake LDAP “servers” with different sets of objects that correspond to different LDAP URIs.

• Ease your test setup with LDAPFakerMixin, a mixin for unittest.TestCase

– Automatically manages patching python-ldap for the code under test

– Populate objects into one or more LDAP “servers” with fixture files

– Provides the following test instrumentation for inspecting state after the test:

∗ Access to the full object store for each LDAP uri accessed

∗ All connections made

5

https://docs.python.org/3/library/unittest.html#unittest.TestCase

python-ldap-faker, Release 1.1.0

∗ All python-ldap API calls made

∗ All python-ldap LDAP options set

– Provides test isolation: object store changes, connections, call history, option changes are all reset between
tests

– Use handy LDAP specific asserts to ease your testing

• Define your own hooks to change the behavior of your fake “servers”

• Support behavior for specific LDAP implementations:

– Redhat Directory Server/389 implementation support: have your test believe it’s talking to an RHDS/389
server.

6 Chapter 2. Features:

CHAPTER

THREE

QUICKSTART

The easiest way to use python-ldap-faker in your unittest based tests is to use the LDAPFakerMixin mixin for
unittest.TestCase.

This will patch ldap.initialize, ldap.set_option and ldap.get_option to use our FakeLDAP interface, and
load fixtures in from JSON files to use as test data.

Let’s say we have a class App in our myapp module that does LDAP work that we want to test.

First, prepare a file named data.json with the objects you want loaded into your fake LDAP server. Let’s say you
want your data to consist of some posixAccount objects. If we make data.json look like this:

[
[

"uid=foo,ou=bar,o=baz,c=country",
{

"uid": ["foo"],
"cn": ["Foo Bar"],
"uidNumber": ["123"],
"gidNumber": ["123"],
"homeDirectory": ["/home/foo"],
"userPassword": ["the password"],
"objectclass": [

"posixAccount",
"top"

]
}

],
[

"uid=fred,ou=bar,o=baz,c=country",
{

"uid": ["fred"],
"cn": ["Fred Flintstone"],
"uidNumber": ["124"],
"gidNumber": ["124"],
"homeDirectory": ["/home/fred"],
"userPassword": ["the fredpassword"],
"objectclass": [

"posixAccount",
"top"

]
}

],
(continues on next page)

7

https://docs.python.org/3/library/unittest.html#module-unittest
https://docs.python.org/3/library/unittest.html#unittest.TestCase
https://www.python-ldap.org/en/latest/reference/ldap.html#ldap.initialize
https://www.python-ldap.org/en/latest/reference/ldap.html#ldap.set_option
https://www.python-ldap.org/en/latest/reference/ldap.html#ldap.get_option

python-ldap-faker, Release 1.1.0

(continued from previous page)

[
"uid=barney,ou=bar,o=baz,c=country",
{

"uid": ["barney"],
"cn": ["Barney Rubble"],
"uidNumber": ["125"],
"gidNumber": ["125"],
"homeDirectory": ["/home/barney"],
"userPassword": ["the barneypassword"],
"objectclass": [

"posixAccount",
"top"

]
}

]
]

We can write our TestCase like so:

import unittest

import ldap
from ldap_faker import LDAPFakerMixin

from myapp import App

class YourTestCase(LDAPFakerMixin, unittest.TestCase):

ldap_modules = ['myapp']
ldap_fixtures = 'data.json'

def test_auth_works(self):
app = App()
A method that does a `simple_bind_s`
app.auth('fred', 'the fredpassword')
conn = self.get_connections()[0]
self.assertLDAPConnectionMethodCalled(

conn, 'simple_bind_s',
{'who': 'uid=fred,ou=bar,o=baz,c=country', 'cred': 'the fredpassword'}

)

def test_correct_connection_options_were_set(self):
app = App()
app.auth('fred', 'the fredpassword')
conn = self.get_connections()[0]
self.assertLDAPConnectionOptionSet(conn, ldap.OPT_X_TLX_NEWCTX, 0)

def test_tls_was_used_before_auth(self):
app = App()
app.auth('fred', 'the fredpassword')
conn = self.get_connections()[0]
self.assertLDAPConnectiontMethodCalled(conn, 'start_tls_s')

(continues on next page)

8 Chapter 3. Quickstart

python-ldap-faker, Release 1.1.0

(continued from previous page)

self.assertLDAPConnectionMethodCalledAfter(conn, 'simple_bind_s', 'start_tls_s')

3.1 Faking LDAP servers

python-ldap-faker stores all LDAP objects in a fake LDAP “server” class: ObjectStore, and all our fake
python-ldap methods operate on the LDAP objects in that object store via the exposed methods on ObjectStore.

You won’t typically use ObjectStore directly, but instead you’ll use LDAPServerFactory to register ObjectStore
objects to correspond to specific LDAP URIs (e.g. ldap://server.example.com). Our main fake python-ldap
interface class FakeLDAP uses the LDAPServerFactory to assign the correct ObjectStore when FakeLDAP.
initialize is called by our code under test.

3.1.1 Structure of LDAP records

python-ldap-faker tries to pretend it is python-ldap as much as possible. Important to this is to mimic how
python-ldap and LDAP servers represent LDAP objects.

LDAP objects have these characteristics:

• The primary key for an LDAP object is the dn. The dn is case-insensitive in all python-ldap methods. For
example, these two statements should operate on the same object:

ldap_obj.simple_bind_s("uid=foo,ou=bar,o=baz,c=country", "the password")
ldap_obj.simple_bind_s("UID=FOO,OU=BAR,O=BAZ,C=COUNTRY", "the password")

• Simliarly, basedn, wherever required, is case-insensitive.

• When doing searches (search_s, search_ext), LDAP object attributes and values are compared case-
insensitively. These searches should all return the same set of objects:

ldap_obj.search_s("ou=bar,o=baz,c=country", ldap.SCOPE_SUBTREE, '(uid=bar)')
ldap_obj.search_s("ou=bar,o=baz,c=country", ldap.SCOPE_SUBTREE, '(UID=bar)')
ldap_obj.search_s("ou=bar,o=baz,c=country", ldap.SCOPE_SUBTREE, '(uid=bAr)')

• LDAP objects returned by ldap.search_s have this type: Tuple[str, Dict[str, List[bytes]]. and this
structure:

('the dn', {'attribute1': [b'value1', b'value2'], ...})

3.1.2 LDAPServerFactory

LDAPServerFactory objects allow you to register ObjectStore bound to particular LDAP URIs so that when some-
one uses our FakeLDAP.initialize method, it gets properly instrumented with a copy of the ObjectStore from
the LDAPServerFactory. FakeLDAP takes a fully loaded LDAPServerFactory object as a constructor object.

Note: Note that we said a copy of the ObjectStore. Since the primary use of python-ldap-faker is in testing,
and we want to ensure good test isolation, we should start each test with a fresh copy of original ObjectStore data
for our LDAP URI so that we can ensure that any modifications to that data came only from our code under test.

3.1. Faking LDAP servers 9

python-ldap-faker, Release 1.1.0

3.1.3 ObjectStore

The core of python-ldap-faker is the ObjectStore class. This behaves as the LDAP “server” with which our fake
python-ldap interface interacts. In order to do meaningful work with it, it needs to be loaded with LDAP objects.
There are three methods on ObjectStore that you can use to load your objects:

• ObjectStore.register_object: load a single object into the object store

• ObjectStore.register_objects: load a list of objects into the object store

• ObjectStore.load_objects: load a list of objects from a JSON file into the object store

Once loaded into ObjectStore, we make a fully case-insensitive internal-only copy of the object (stored in
ObjectStore.objects for use in executing searches, but the data returned will be the case-sensitive versions of
those objects (the case-sensitive versions are stored in ObjectStore.raw_objects).

Data Types for ObjectStore.register_object(s)

Each object loaded into ObjectStore.register_object or ObjectStore.register_objects must be of this
type:

ldap_faker.types.LDAPRecord

The central part of internal API.

This represents a generic version of type ‘origin’ with type arguments ‘params’. There are two kind of these
aliases: user defined and special. The special ones are wrappers around builtin collections and ABCs in collec-
tions.abc. These must have ‘name’ always set. If ‘inst’ is False, then the alias can’t be instantiated, this is used
by e.g. typing.List and typing.Dict.

alias of Tuple[str, Dict[str, List[bytes]]]

Example:

(
'uid=user,ou=mydept,o=myorg,c=country',
{

'cn': [b'Firstname User1'],
'uid': [b'user'],
'uidNumber': [b'123'],
'gidNumber': [b'456'],
'homeDirectory': [b'/home/user'],
'loginShell': [b'/bin/bash'],
'userPassword': [b'the password'],
'objectclass': [b'posixAccount', b'top']

}
)

Thus:

• dn is a str

• Attribute names are str

• Attribute values are List[bytes]

10 Chapter 3. Quickstart

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/stdtypes.html#bytes

python-ldap-faker, Release 1.1.0

File format for ObjectStore.load_objects

Unfortunately, JSON has neither a Tuple type nor a bytes type, so we need to use lists and strings instead, and
convert them to the appropriate types after reading the JSON file. Thus in our JSON files, we must provide our data as
List[List[str, Dict[str, List[str]]]] instead. Example:

[
[
'uid=foo,ou=bar,o=baz,c=country',
{
"uid": ["foo"],
"cn": ["Foo Bar"],
"uidNumer": ["123"],
"gidNumer": ["123"],
"homeDirectory": ["/home/foo"],
"userPassword": ["the password"],
"ojectclass": [
"posixAccount",
"top"

]
}

]
]

If you structure your file of LDAP objects like that, and pass in the filename to ObjectStore, we’ll load the data from
the file and convert that struct to List[Tuple[str, List[bytes]]] before using the result with ObjectStore.
register_objects.`

3.2 Specific LDAP implementations supported

Out of the box, our “server” class ObjectStore supports searching, adding, updating and deleting objects like a regular
LDAP server.

Real LDAP implementations (Redhat Directory Server, 389, openldap, Active Directory) can have special behavior
and side-effects that you may need to support in order to run your tests properly.

Currently, we support some special behavior for one implementation: Redhat Directory Server/389.

3.2.1 Redhat Directory Server/389

To get these behaviors, add the 389 tag to your ObjectStore:

>>> store = ObjectStore(tags=['389'])

In LDAPFakerMixin, apply the tags with like this for a single, default server:

import unittest
from ldap_faker import LDAPFakerMixin

class TestDefaultTaggedServer(LDAPFakerMixin, unittest.TestCase):

(continues on next page)

3.2. Specific LDAP implementations supported 11

https://access.redhat.com/documentation/en-us/red_hat_directory_server/11/html/administration_guide/index

python-ldap-faker, Release 1.1.0

(continued from previous page)

ldap_modules = ['myapp']
ldap_fixtures = ('data.json', ['389'])

Or like this for a named server:

import unittest
from ldap_faker import LDAPFakerMixin

class TestDefaultTaggedServer(LDAPFakerMixin, unittest.TestCase):

ldap_modules = ['myapp']
ldap_fixtures = [

('server1.json', 'ldap://server1', ['389']),
]

Features supported

Operational attributes

• entryid

• nsUniqueId

• entrydn

• createTimestamp

• modifyTimestamp

• creatorName

• modifierName

These work like they should in RHDS/389. They are not returned unless specifically asked for during
searches, and they are read-only. The timestamps and names will be updated automatically.

nsrole and nsroledn

User objects support the nsroledn (writeable) and nsrole (read-only) attributes. Adding a DN
to nsroledn makes it appear automatically in nsrole, and any objects with `objectClass of
ldapsubentry will affect nsrole as it does in RHDS/389.

nsrole and nsroledn are operational attributes; they must be specifically requested during searches.

Important: In RHDS/389, users do not seem to be identified by objectclass. We’re simulating this by
assuming that any object with a userPassword attribute on it is a user.

ldapsubentries

The three ldapsubentry objectclasses are supported and behave as they do in RHDS/389:

• nsManagedRoleDefinition: does nothing when added or removed

• nsNestedRoleDefinition: user objects will gain the proper DN if they match one of this object’s
nsroledn entries.

12 Chapter 3. Quickstart

python-ldap-faker, Release 1.1.0

• nsFilteredRoleDefinition: user objects will gain the proper DN if they match this object’s
nsRoleFilter.

3.3 Authentication and Authorization

Just like with real LDAP, you’ll need to bind to the fake LDAP “server” before you can do certain LDAP operations.

3.3.1 Authorization within python-ldap-faker

Like a real LDAP server, these write operations require you to successfully do a non-anonymous bind:

• add_s

• delete_s

• modify_s

• rename_s

3.3.2 Anonymous binds

You don’t need to do anything special to allow anonymous binds. This should work:

ldap_obj = fake_ldap.initialize('ldap://server')
ldap_obj.simple_bind_s()

So does this:

ldap_obj = fake_ldap.initialize('ldap://server')
ldap_obj.search_s('ou=bar,o=baz,c=country', ldap.SCOPE_SUBTREE, '(uid=user)')

3.3.3 Authenticated binds

To do an authenticated bind, you’ll need to load an appropriately configured user object into the ObjectStore for your
connection.

When you do an authenticated bind via FakeLDAPObject.simple_bind_s, python-ldap-faker will look in its
ObjectStore for an object with the dn of who, and it will compare cred with the first value of that object’s
userPassword attribute specifically.

If, for example, your code wants to bind as uid=foo,ou=bar,o=baz,c=country with password the password,
then python-ldap-faker will expect an object in the ObjectStore that minimally looks like this:

(
'uid=foo,ou=bar,o=baz,c=country',
{

"userPassword": [b"the password"],
}

)

3.3. Authentication and Authorization 13

python-ldap-faker, Release 1.1.0

3.4 Using ldap_faker with unittest

Most of the purpose of python-ldap-faker is to make automated testing of code that uses python-ldap easier.

To this end, python-ldap-faker provides LDAPFakerMixin, a mixin class for unittest.TestCase which handles
all the hard work of patching and instrumenting the appropriate python-ldap functions, objects and methods.

LDAPFakerMixin will do the following things for you:

• Read data from JSON fixture files to populate one or more ObjectStore objects (our fake LDAP server class)

• Associate those ObjectStore objects with particular LDAP URIs

• Patch ldap.initialize to return FakeLDAPObject objects configured with the appropriate ObjectStore for
the LDAP URI passed into FakeLDAP.initialize

3.4.1 Configuring your LDAPFakerMixin TestCase

We need to set two class attributes on LDAPFakerMixin in order for it to properly set up your tests:

• LDAPFakerMixin.ldap_modules: The list of your code’s modules in which to patch ldap.initialize,
ldap.set_option and ldap.get_option`

• LDAPFakerMixin.ldap_fixtures: A list of JSON fixture files with which to create the ObjectStore objects

LDAPFakerMixin.ldap_modules

LDAPFakerMixin uses unittest.mock.patch to patch your code so that it uses our fake versions of ldap.
initialize, ldap.set_option and ldap.get_option instead of the real one. The way patch works is that it
must apply the patch within the context of your module that does import ldap, not within the ldap module itself.
Thus, to make LDAPFakerMixin work for you, you must list all the modules for code under test in which you do
import ldap.

To list all the modules in which the code under test does import ldap, use the LDAPFakerMixin.ldap_modules
class attribute.

For example, if you have a class MyLDAPUsingClass in the module myapp.myldapstuff, and you do import ldap
in myapp.myldapstuff, for instance:

import ldap

class MyLDAPUsingClass:

def connect(self, uid: str, password: str):
self.conn = ldap.initialize('ldap://server')
self.conn.set_option(ldap.OPT_X_TLS_NEWCTX, 0)
self.conn.start_tls_s()
self.conn.simple_bind_s(
f'uid={uid},ou=bar,o=baz,c=country',
'the password'

)

To test this code, you would use this for ldap_modules:

14 Chapter 3. Quickstart

https://docs.python.org/3/library/unittest.html#unittest.TestCase
https://www.python-ldap.org/en/latest/reference/ldap.html#ldap.initialize
https://www.python-ldap.org/en/latest/reference/ldap.html#ldap.initialize
https://www.python-ldap.org/en/latest/reference/ldap.html#ldap.set_option
https://docs.python.org/3/library/unittest.mock.html#unittest.mock.patch
https://www.python-ldap.org/en/latest/reference/ldap.html#ldap.initialize
https://www.python-ldap.org/en/latest/reference/ldap.html#ldap.initialize
https://www.python-ldap.org/en/latest/reference/ldap.html#ldap.set_option
https://www.python-ldap.org/en/latest/reference/ldap.html#ldap.get_option

python-ldap-faker, Release 1.1.0

import unittest
from ldap_faker import LDAPFakerMixin

from myapp.myldapstuff import MyLDAPUsingClass

class TestMyLDAPUsingCLass(LDAPFakerMixin, unittest.TestCase):

ldap_modules = ['myapp.myldapstuff']

LDAPFakerMixin.ldap_fixtures

In order to effectively test your python-ldap using code, you’ll need to populate an LDAPServerFactory one or
more ObjectStore objects bound to LDAP URIs. We use LDAPFakerMixin.ldap_fixtures to declare file paths
to fixture files to use to populate those ObjectClass objects.

• Fixture files are JSON files in the format described in File format for ObjectStore.load_objects.

• File paths are either absolute paths or are treated as relative to the folder in which your TestCase resides.

• Fixtures are loaded into the LDAPServerFactory once per unittest.TestCase via the unittest.
TestCase.setUpClass classmethod.

You can configure your LDAPFakerMixin to use fixtures one of two ways:

• Use a single default fixture that will be used no matter which LDAP URI is passed to FakeLDAP.initialize

• Bind each fixture to specific a LDAP URI. This allows you simulate talking to several different LDAP servers.

Note: When binding fixtures to particular LDAP URIs, if your tries to use FakeLDAP.initialize with an LDAP
URI that was not explicitly configured, python-ldap-faker will raise ldap.SERVER_DOWN

This form sets up one default fixture:

import unittest
from ldap_faker import LDAPFakerMixin

from myapp.myldapstuff import MyLDAPUsingClass

class TestMyLDAPUsingCLass(LDAPFakerMixin, unittest.TestCase):

ldap_fixtures = 'objects.json'

This form binds fixtures to LDAP URIs:

import unittest
from ldap_faker import LDAPFakerMixin

from myapp.myldapstuff import MyLDAPUsingClass

class TestMyLDAPUsingCLass(LDAPFakerMixin, unittest.TestCase):

ldap_fixtures = [
('server1.json', 'ldap://server1.example.com'),

(continues on next page)

3.4. Using ldap_faker with unittest 15

https://docs.python.org/3/library/unittest.html#unittest.TestCase
https://docs.python.org/3/library/unittest.html#unittest.TestCase.setUpClass
https://docs.python.org/3/library/unittest.html#unittest.TestCase.setUpClass
https://www.python-ldap.org/en/latest/reference/ldap.html#ldap.SERVER_DOWN

python-ldap-faker, Release 1.1.0

(continued from previous page)

('server2.json', 'ldap://server2.example.com')
]

3.4.2 Test isolation

Each test method on your unittest.TestCase will get a fresh, unaltered copy of the fixture data, and connections,
call histories, options set from previous test methods will be cleared.

3.4.3 Test support offered by LDAPFakerMixin

For each test you run, your test will have access to the FakeLDAP instance used for that test through the
LDAPFakerMixin.fake_ldap instance attribute. Each test gets a fresh FakeLDAP instance.

Note: For detailed information on any of the below, see the Developer Interface.

Some things to know about your FakeLDAP instance:

• FakeLDAP.connections lists all the FakeLDAPObject connections created during your test method, in the
order they were made. One such object is created each time FakeLDAP.initialize is called by your code.

• FakeLDAP.options is a OptionStore object that records all the global LDAP options set during your test

• FakeLDAP.calls is a CallHistory object that records calls (with arguments) to FakeLDAP.initialize,
FakeLDAP.set_option, FakeLDAP.get_option

Some things to know about the FakeLDAPObject objects in FakeLDAP.connections:

• FakeLDAPObject.uri is the LDAP URI requested

• FakeLDAPObject.store is our ObjectStore copy

• FakeLDAP.options is a OptionStore object that records all the LDAP options set on this connection during
your test method

• FakeLDAPObject.calls is a CallHistory that records all python-ldap api calls (with arguments) that your
code made to this FakeLDAPObject

• FakeLDAPObject.bound_dn is the dn of the user bound via simple_bind_s, if any. If this is None, we did
anonymous binding.

• FakeLDAPObject.tls_enabled will be set to True if start_tls_s was used on this connection

3.5 Hooks: modifying ObjectStore behavior

python-ldap-faker provides a hook system to allow you to arbitrarily modify behavior of ObjectStore. Primarily
this is provided so that you can emulate the behavior of the various LDAP implementations (Redhat Directory Server,
Active Directory, openldap, etc.).

You can also use hooks in your test code to produce behavior that may not be available out of the box from
python-ldap-faker.

Rules about hooks:

• Hooks are run in the order they are registered

16 Chapter 3. Quickstart

https://docs.python.org/3/library/unittest.html#unittest.TestCase

python-ldap-faker, Release 1.1.0

• Each hook needs a callable with a particular signature

• Hooks are global – they apply to all ObjectStore instances and instances instantiated (unless they are tagged
hooks)

3.5.1 Registering hooks

Hooks have a name and a callable signature. Here is an example of registering a hook to the pre_set hook, which
will be run in ObjectStore.set before the object is saved to the internal storage, and requires the callable signature
Callable[[ObjectStore, LDAPRecord, Optional[str]], None]:

from ldap_faker import hooks, ObjectStore, LDAPRecord

def pre_set_do_something_special(store: ObjectStore, record: LDAPRecord, bind_dn: str =␣
→˓None) -> None:

...

hooks.register('pre_set', pre_set_do_something_special)

Thereafter, whenever any code calls ObjectStore.set, this function will be called with the store as the first argument,
the record to be written as the second argument and the bind_dn of the binding user as the third argument.

3.5.2 Tagged hooks

Using tags, you can register a hook that will only apply to ObjectStore instances which are themselves tagged with
one of those tags:

from ldap_faker import hooks, ObjectStore, LDAPRecord

def pre_set_do_something_special(store: ObjectStore, record: LDAPRecord, bind_dn: str =␣
→˓None) -> None:

print(f'{bind_dn} ran pre_set_do_something_sepcial')

hooks.register('pre_set', pre_set_do_something_special, tags=['special'])

This hook will only be executed for ObjectStore instances whose tags include special:

>>> store = ObjectStore(tags=['special'])
>>> obj = ('mydn', {'objectclass': [b'top']))
>>> store.set(obj, bind_dn='auser')
auser ran pre_set_do_something_special

It will not be executed for ObjectStore instances whose tags do not include special:

>>> store = ObjectStore(tags=['other'])
>>> obj = ('mydn', {'objectclass': [b'top']))
>>> store.set(obj, bind_dn='auser')

3.5. Hooks: modifying ObjectStore behavior 17

python-ldap-faker, Release 1.1.0

Tagging ObjectClass instances in LDAPFakerMixin

When using LDAPFakerMixin, you can tag ldap_fixtures with particular tags.

To tag the default “server”, specify the fixture as a 2-tuple, where the first element is the filename of the fixture file,
and the second element is a list of tags:

import unittest
from ldap_faker import LDAPFakerMixin

class TestDefaultTaggedServer(LDAPFakerMixin, unittest.TestCase):

ldap_modules = ['myapp']
ldap_fixtures = ('data.json', ['special'])

To tag named “servers”, you can tag individual servers by providing a 3-tuple instad of a 2-tuple, where the third
element is the list of tags:

import unittest
from ldap_faker import LDAPFakerMixin

class TestDefaultTaggedServer(LDAPFakerMixin, unittest.TestCase):

ldap_modules = ['myapp']
ldap_fixtures = [

('server1.json', 'ldap://server1', ['special']),
('server2.json', 'ldap://server2')

]

Above, ldap://server1 will use all hooks tagged with special in addition to any untagged hooks, while ldap://
server2 will use only the untagged hooks.

3.5.3 Available hooks

pre_objectstore_init
Signature: Callable[[store: ObjectStore], None]

Where store is the ObjectStore object.

This will be at the end of ObjectStore.__init__.

You can use this to set up any state you might need for later hooks by adding keys to ObjectStore.controls,
or to add attributes to ObjectStore.operational_attributes.

pre_set
Signature: Callable[[store: ObjectStore, record: LDAPRecord, bind_dn: Optional[str]
= None], None]

Where store is the ObjectStore object, record is the record to be set and bind_dn is the dn of the user
doing the set (possibly None)

This will be executed on ObjectStore.set before the object actually gets saved.

ObjectStore.set is called for every write operation:

• ObjectStore.load_objects

18 Chapter 3. Quickstart

python-ldap-faker, Release 1.1.0

• ObjectStore.register_objects

• ObjectStore.register_object

• FakeLDAPObject.add_s

• FakeLDAPObject.modify_s

• FakeLDAPObject.delete_s

• FakeLDAPObject.rename_s

post_set
Signature: Callable[[store: ObjectStore, record: LDAPRecord, bind_dn: Optional[str]
= None], None]

Where store is the ObjectStore object, record is the record to be set and bind_dn is the dn of the user
doing the set (possibly None).

This will be executed on ObjectStore.set after the object gets saved.

pre_copy
Signature: Callable[[store: ObjectStore, dn: str], None]

Where store is the ObjectStore object, and dn is the DN of the object to copy.

This will be executed on ObjectStore.copy before the object actually gets retrieved from the store to be copied.

post_copy
Signature: Callable[[store: ObjectStore, data: LDAPData], LDAPData]

Where store is the ObjectStore object, and dn is the DN of the object to copy. It should return the modified
LDAPData dict.

This will be executed on ObjectStore.copy after the object is retrieved from the store and :py:func:copy.
deepcopy has run, but before returning the data to the caller.

pre_create
Signature: Callable[[store: ObjectStore, dn: str, modlist: AddModlist, bind_dn: str
= None], None]

Where store is the ObjectStore object, dn is the record to be created, modlist is modlist to be used for
creating the record, and bind_dn is the dn of the user doing the create (possibly None).

This will be executed on ObjectStore.create before the modlist gets processed.

ObjectStore.create is what actually does the work when FakeLDAPObject.add_s is called.

post_create
Signature: Callable[[store: ObjectStore, record: LDAPRecord, bind_dn: Optional[str]
= None], None]

Where store is the ObjectStore object, record is the record to be created, and bind_dn is the dn of the user
doing the create (possibly None).

This will be executed on ObjectStore.create after the modlist has processed to build the object, but before
it has been writen to the data store.

pre_update
Signature: Callable[[store: ObjectStore, dn: str, modlist: Modlist, bind_dn: str =
None], None]

Where store is the ObjectStore object, dn is the record to be modified`, modlist is modlist to be applied to
the record, and bind_dn is the dn of the user doing the update (possibly None).

This will be executed on ObjectStore.update before the object actually gets saved.

3.5. Hooks: modifying ObjectStore behavior 19

python-ldap-faker, Release 1.1.0

ObjectStore.update is what actually does the work when FakeLDAPObject.modify_s is called.

post_update
Signature: Callable[[store: ObjectStore, record: LDAPRecord, bind_dn: Optional[str]
= None], None]

Where store is the ObjectStore object, record is the updated record and bind_dn is the dn of the user doing
the update (possibly None)

This will be executed on ObjectStore.update after the modlist has been applied to the object, but before it
has been writen to the data store.

pre_delete
Signature: Callable[[store: ObjectStore, record: LDAPRecord, bind_dn: Optional[str]
= None], None]

Where store is the ObjectStore object, record is the record to deleted, and bind_dn is the dn of the user
doing the set (possibly None).

This will be executed on ObjectStore.delete before the object actually gets deleted from the data store.

ObjectStore.delete is what actually does the work when FakeLDAPObject.delete_s is called, and is also
called during FakeLDAPObject.rename_s to delete the old object.

post_delete
Signature: Callable[[store: ObjectStore, record: LDAPRecord, bind_dn: Optional[str]
= None], None]

Where store is the ObjectStore object, record is the record deleted, and bind_dn is the dn of the user doing
the set (possibly None).

This will be executed on ObjectStore.delete after the object actually gets deleted from the data store.

pre_register_object
Signature: Callable[[store: ObjectStore, record: LDAPRecord], None]

Where store is the ObjectStore object and record is the record to be registered.

This will be executed on ObjectStore.register_object before the object actually gets saved.

post_register_object
Signature: Callable[[store: ObjectStore, record: LDAPRecord], None]

Where store is the ObjectStore object and record is the record that was registered.

This will be executed on ObjectStore.register_object after the object gets saved.

pre_register_objects
Signature: Callable[[store: ObjectStore, records: List[LDAPRecord]], None]

Where store is the ObjectStore object and records is the list of records to be registered.

This will be executed on ObjectStore.register_objects before the objects actually get saved.

post_register_objects
Signature: Callable[[store: ObjectStore, records: List[LDAPRecord]], None]

Where store is the ObjectStore object and records are the records that were registered.

This will be executed on ObjectStore.register_objects after the objects get saved.

pre_load_objects
Signature: Callable[[store: ObjectStore, filename: str], None]

Where store is the ObjectStore object and filename is the name of the data file to load.

20 Chapter 3. Quickstart

python-ldap-faker, Release 1.1.0

This will be executed on ObjectStore.load_objects before the file gets loaded.

post_load_objects
Signature: Callable[[store: ObjectStore, records: List[LDAPRecord]], None]

Where store is the ObjectStore object and records are the records that were loaded from the file.

This will be executed on ObjectStore.load_objects after the objects loaded from the file get saved.

3.6 Developer Interface

This part of the documentation covers all the classes and functions that make up python-ldap-faker.

3.6.1 Unittest Support

class ldap_faker.LDAPFakerMixin(*args, **kwargs)
This is a mixin for use with unittest.TestCase. Properly configured, it will patch ldap.initialize to
use our FakeLDAP.initialize fake function instead, which will return FakeLDAPObject objects instead of
ldap.ldapobject.LDAPObject objects.

ldap_modules is a list of python module paths in which we should patch ldap.initialize with our
FakeLDAP.initialize method. For example:

class TestMyStuff(LDAPFakerMixin, unittest.TestCase):

ldap_modules = ['myapp.module']

will cause LDAPFakerMixin to patch myapp.module.ldap.initialize.

ldap_fixtures names one or more JSON files containing LDAP records to load into a ObjectStore via
ObjectStore.load_objects. ldap_fixtures can be either a single string, a Tuple[str, List[str]],
or a list of Tuple[str, str, List[str]].

If we define our test class like so:

class TestMyStuff(LDAPFakerMixin, unittest.TestCase):

ldap_fixtures = 'myfixture.json'

We will build our LDAPServerFactory with a single default ObjectStore with the contents of myfixture.
json loaded in.

If we define our test class like so:

class TestMyStuff(LDAPFakerMixin, unittest.TestCase):

ldap_fixtures = ('myfixture.json', ['389'])

We will build our LDAPServerFactory with a single default ObjectStore with the contents of myfixture.
json loaded in, with the tag 389 applied to it.

If we define our test class like this instead:

3.6. Developer Interface 21

https://docs.python.org/3/library/unittest.html#unittest.TestCase
https://www.python-ldap.org/en/latest/reference/ldap.html#ldap.initialize
https://www.python-ldap.org/en/latest/reference/ldap.html#ldap.initialize

python-ldap-faker, Release 1.1.0

class TestMyStuff(LDAPFakerMixin, unittest.TestCase):

ldap_fixtures = [
('server1.json', 'ldap://server1', []),
('server2.json', 'ldap://read-server2', ['389']),

]

we will build our LDAPServerFactory with two ObjectStore objects. The first will have the data from
server1.json and will be used with uri ldap://server1. The second will be used with uri ldap://server2
and have the data from with the contents of server2.json loaded in, and will have the tag 389 applied to it.

Note: The tags are used when configuring behavior for our ObjectStore`. The 389 tag tells the ObjectStore
to emulate a 389 type LDAP server (Redhat Directory Server).

ldap_modules: List[str] = []

The list of python paths to modules that import ldap

ldap_fixtures: Optional[ldap_faker.types.LDAPFixtureList] = None

The filenames of fixtures to load into our fake LDAP servers

server_factory: LDAPServerFactory

The LDAPServerFactory configured by our setUpClass

fake_ldap: FakeLDAP

the FakeLDAP instance created by setUp

classmethod resolve_file(filename: str)→ str
Given filename, if that filename is a non-absolute path, resolve that filename to an absolute path under
the folder in which our subclass’ file resides. If filename is an absoute path, don’t change it.

Parameters
filename – the non-absolute file path to a fixture file

Raises
FileNotFoundError – the fixture file did not exist

Returns
The absolute path to the fixture file.

classmethod load_servers(server_factory: LDAPServerFactory)→ None
Configure server_factory with one or more ObjectStore objects by looking at ldap_fixtures, a
dict where the key is a uri and the value is the name of a JSON file to use as the objects for the associated
ObjectStore

Note: If you want to populate your LDAPServerFactory in a different way than loading directly from
the JSON files listed in ldap_fixtures, this is the classmethod you want to override.

Parameters
server_factory – the LDAPServerFactory object to populate

classmethod setUpClass()

Build the LDAPServerFactory we’ll use and save it as a class attribute.

22 Chapter 3. Quickstart

https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/exceptions.html#FileNotFoundError
https://docs.python.org/3/library/constants.html#None

python-ldap-faker, Release 1.1.0

We do this as a classmethod because constructing our ObjectStore objects is time consuming and we
don’t want to have to do it for each of our tests.

classmethod tearDownClass()

Delete our server_factory so we con’t corrupt future tests or leak memory.

setUp()

Create a FakeLDAP instance, make it use the server_factory that our setUpClass created, and patch
ldap.initialize in each of the modules named in ldap_modules. Save the FakeLDAP instance to our
fake_ldap attribute for later use in our test code.

tearDown()

Undo the patches we made in setUp

last_connection()→ Optional[FakeLDAPObject]
Return the FakeLDAPObject for the last connection made during ourtest. Hopefully a useful shortcut for
when we only make one connection.

Returns
The last connection made

get_connections(uri: Optional[str] = None)→ List[FakeLDAPObject]
Return a the list of FakeLDAPObject objects generated during our test, optionally filtered by LDAP URI.

Keyword Arguments
uri – the LDAP URI by which to filter our connections

assertGlobalOptionSet(option: int, value: ldap_faker.types.LDAPOptionValue)→ None
Assert that a global LDAP option was set.

Parameters
• option – an LDAP option (e.g. ldap.OPT_DEBUG_LEVEL)

• value – the value we expect the option to be set to

assertGlobalFunctionCalled(api_name: str)→ None
Assert that a global LDAP function was called.

Parameters
api_name – the name of the function to look for (e.g. initialize)

assertLDAPConnectionOptionSet(conn: FakeLDAPObject, option: str, value:
ldap_faker.types.LDAPOptionValue)→ None

Assert that a specific FakeLDAPObject option was set with a specific value.

Parameters
• conn – the connection object to examine

• option – the code for the option (e.g. ldap.OPT_X_TLS_NEWCTX)

• value – the value we expect the option to be set to

assertLDAPConnectionMethodCalled(conn: FakeLDAPObject, api_name: str, arguments:
Optional[Dict[str, Any]] = None)→ None

Assert that a specific FakeLDAPObject method was called, possibly specifying the specific arguments it
should have been called with.

Parameters
• conn – the connection object to examine

3.6. Developer Interface 23

https://docs.python.org/3/library/unittest.mock.html#unittest.mock.patch
https://www.python-ldap.org/en/latest/reference/ldap.html#ldap.initialize
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://www.python-ldap.org/en/latest/reference/ldap.html#ldap.OPT_X_TLS_NEWCTX
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/constants.html#None

python-ldap-faker, Release 1.1.0

• api_name – the name of the function to look for (e.g. simple_bind_s)

Keyword Arguments
arguments – if given, assert that the call exists AND was called this set of arguments. See
LDAPCallRecord for how the arguments dict should be constructed.

assertLDAPConnectionMethodCalledAfter(conn: FakeLDAPObject, api_name: str, target_api_name:
str)→ None

Assert that a specific FakeLDAPObject method was called after another specific FakeLDAPObject
method.

Parameters
• conn – the connection object to examine

• api_name – the name of the function to look for (e.g. simple_bind_s)

• target_api_name – the name of the function which should appear before api_name in
the call history

class ldap_faker.LDAPCallRecord(api_name: str, args: Dict[str, Any])
This is a single LDAP call record, used by CallHistory to store information about calls to LDAP api functions.

api_name is the name of the LDAP api call made (e.g. simple_bind_s, search_s).

args is the argument list of the call, including defaults for keyword arguments not passed. This is a dict where
the key is the name of the positional or keyword argument, and the value is the passed in (or default) value for
that argument.

Example

If we make this call to a patched FakeLDAPObject:

ldap_obj.search_s('ou=bar,o=baz,c=country', ldap.SCOPE_SUBTREE, '(uid=foo)')

This will be recorded as:

LDAPCallRecord(
api_name='search_s',
args={

'base': 'ou=bar,o=baz,c=country',
'scope': 2,
'filterstr': '(uid=foo)',
'attrlist': None,
'attrsonly': 0

}
)

api_name: str

the name LDAP api call

args: Dict[str, Any]

the args and kwargs dict

class ldap_faker.CallHistory(calls: Optional[List[LDAPCallRecord]] = None)
This class records the python-ldap call history for a particular FakeLDAPObject as LDAPCallRecord objects.
It works in conjunction with the @record_call decorator. An CallHistory object will be configured on each
FakeLDAPObject and on each FakeLDAP object capture their call history.

24 Chapter 3. Quickstart

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.List

python-ldap-faker, Release 1.1.0

We use this in our tests with appropriate asserts to ensure that our code called the python-ldap methods we
expected, in the order we expected, with the arguments we expected.

filter_calls(api_name: str)→ List[LDAPCallRecord]
Filter our call history by function name.

Parameters
api_name – look through our history for calls to this function

Returns
A list of (api_name, arguments) tuples in the order in which the calls were made. Arguments
is a Dict[str, Any].

property calls: List[LDAPCallRecord]

This property returns the list of all calls made against the parent object.

Example

To test that your code did a ldap.simple_bind_s call with the usernam and password you expected, you
could do:

from unittest import TestCase
import ldap
from ldap_faker import LDAPFakerMixin

from my_code import App

class MyTest(LDAPFakerMixin, TestCase):

ldap_modules = ['my_code']
ldap_fixtures = 'myfixture.json'

def test_option_was_set(self):
app = MyApp()
app.do_the_thing()
conn = self.ldap_faker.connections[0]
self.assertEqual(

conn.calls,
[('simple_bind_s', {'who': 'uid=foo,ou=dept,o=org,c=country', 'cred

→˓': 'pass'})]
)

Returns
Returns a list of 2-tuples, one for each method call made since the last reset. Each tuple
contains the name of the API and a dictionary of arguments. Argument defaults are included.

property names: List[str]

Returns the list names of python-ldap functions or methods called, in the order they were called. You
can use this to test whether an particulary

3.6. Developer Interface 25

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/stdtypes.html#str

python-ldap-faker, Release 1.1.0

Example

To test that your code did at least one ldap.add_s call, you could do:

from unittest import TestCase
import ldap
from ldap_faker import LDAPFakerMixin

from my_code import App

class MyTest(LDAPFakerMixin, TestCase):

ldap_modules = ['my_code']
ldap_fixtures = 'myfixture.json'

def test_option_was_set(self):
app = MyApp()
app.do_the_thing()
conn = self.ldap_faker.connections[0]
self.assertEqual('add_s" in conn.calls.names)

Returns
A list of method names, in the order they were called.

3.6.2 python-ldap replacements

class ldap_faker.FakeLDAP(server_factory: LDAPServerFactory)
We use this class to house our replacement code for these three prime python-ldap functions:

• ldap.initialize

• ldap.set_option

• ldap.get_option

The class takes a fully configured LDAPServerFactory as an argument, and will use that factory’s collection
of OptionStore objects to construct new FakeLDAPObject objects.

As a test runs, FakeLDAP keeps track of each LDAP connection made and each global LDAP call made so that
they can be inspected after your code has run.

Note: This is meant to be a disposable object, recreated for each test method. When used properly, all internal
state (connections made, calls made, options set) will be empty at the start of every test.

Parameters
server_factory – a fully configured LDAPServerFactory

connections: List[FakeLDAPObject]

list of FakeLDAPObject connections created in the order in which they were requested

calls: CallHistory

The call history for global ldap function calls

26 Chapter 3. Quickstart

https://www.python-ldap.org/en/latest/reference/ldap.html#ldap.initialize
https://www.python-ldap.org/en/latest/reference/ldap.html#ldap.set_option
https://www.python-ldap.org/en/latest/reference/ldap.html#ldap.get_option
https://docs.python.org/3/library/typing.html#typing.List

python-ldap-faker, Release 1.1.0

options: OptionStore

A dictionary of LDAP options set

initialize(uri: str, trace_level: int = 0, trace_file: ~typing.TextIO = <_io.TextIOWrapper
name='<stdout>' mode='w' encoding='utf-8'>, trace_stack_limit: int = None, fileno:
~typing.Any = None)→ FakeLDAPObject

This is the method we use to patch ldap.initialize when we are testing our LDAP code. When it is
called, we will ask our FakeLDAP.server_factory factory for the ObjectStore most appropriate for
the LDAP uri uri, create a FakeLDAPObject with a copy.deepcopy of that ObjectStore, and return
the FakeLDAPObject.

Note: Of all the arguments in our signature, we only actually use uri. The other arguments are recorded
in our FakeLDAP.calls call history, but are otherwise ignored.

Parameters
• uri – an LDAP URI

• trace_level – logging level (ignored)

• trace_file – file descriptor to which to write traces (ignored)

• trace_stack_limit – stack limit of tracebacks in the debug log (ignored)

• fileno – a socket or file descriptor (ignored)

Raises
ldap.SERVER_DOWN – could not find an appropriate ObjectStore for uri

Returns
A properly configured FakeLDAPObject

set_option(option: int, invalue: ldap_faker.types.LDAPOptionValue)→ None
Set a global python-ldap option. This will create a key option in our FakeLDAP.options dictionary
and set its value to value.

Example

In your test code, you can thus test whether your code set the proper global LDAP option like so:

from unittest import TestCase
import ldap
from ldap_faker import LDAPFakerMixin

from my_code import App

class MyTest(LDAPFakerMixin, TestCase):

ldap_modules = ['my_code']
ldap_fixtures = 'myfixture.json'

def test_option_was_set(self):
app = MyApp()
app.set_the_option(ldap.OPT_DEBUG_LEVEL, 1)
self.assertEqual(self.ldap_faker.options[ldap.OPT_DEBUG_LEVEL], 1)

3.6. Developer Interface 27

https://www.python-ldap.org/en/latest/reference/ldap.html#ldap.initialize
https://docs.python.org/3/library/copy.html#copy.deepcopy
https://www.python-ldap.org/en/latest/reference/ldap.html#ldap.SERVER_DOWN
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None

python-ldap-faker, Release 1.1.0

Parameters
• option – an option from python-ldap

• invalue – the value to set for the option

get_option(option: int)→ ldap_faker.types.LDAPOptionValue
Get a global python-ldap option. If our code hasn’t set an option yet, return the default from python-ldap
for that option.

Parameters
option – an option from python-ldap

Returns
The value currently set for the option.

has_connection(uri: str)→ bool
Test to see whether an ldap.initialize call was made with LDAP URI of uri.

Parameters
uri – The LDAP URI to look for in our connection history

Returns
True if at least one connection to uri was made, False otherwise.

get_connections(uri: str)→ List[FakeLDAPObject]
Return a list of FakeLDAPObject connections to LDAP URI uri.

Parameters
uri – The LDAP URI to look for in our connection history

Returns
A list of FakeLDAPObject objects associated with LDAP URI uri.

connection_calls(api_name: Optional[str] = None, uri: Optional[str] = None)→ CallHistory
Filter our the call history for our connections by function name and optionally LDAP URI.

Args:

Keyword Arguments
• api_name – restrict through our history for calls to this function

• uri – restrict our search to only calls to this URI

Returns
A CallHistory with combined calls from the filtered connections.

class ldap_faker.FakeLDAPObject(uri: str, store: Optional[ObjectStore] = None)
This class simulates most of the interface of ldap.ldapobject.LDAPObject which is the object that gets
returned when you call ldap.initialize().

Note: This is a disposable object that should be recreated for each test, mostly because changes to our
ObjectStore can’t be undone without re-copying from its source in Servers.

Parameters
uri – the LDAP URI of the connection

Keyword Arguments
directory – a populated ObjectStore

28 Chapter 3. Quickstart

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://www.python-ldap.org/en/latest/reference/ldap.html#ldap.initialize
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Optional

python-ldap-faker, Release 1.1.0

uri: str

the LDAP URI for this connection

hostname

port for this connection

Type
the host

options: OptionStore

we store data from set_option calls here

store: ObjectStore

our copy of our ObjectStore for this connection

calls: CallHistory

The method call history

tls_enabled: bool

Set to True if start_tls_s was called

bound_dn: Optional[str]

Set by simple_bind_s to the dn of the user after success

deref: int

Controls whether aliases are automatically dereferenced

protocol_version: int

Version of LDAP in use (always ldap.VERSION3`)

sizelimit: int

Limit on size of message to receive from server

network_timeout: int

Limit on waiting for a network response, in seconds.

timelimit: int

Limit on waiting for any response, in seconds.

timeout: int

Limit on waiting for any response, in seconds.

set_option(option: int, invalue: ldap_faker.types.LDAPOptionValue)→ None
This method sets the value of the ldap.ldap.ldapobject.LDAPObject` option specified by option to
invalue.

Parameters
• option – the option

• value – the value to set the option to

Raises
ValueError – option is not a valid python-ldap option

get_option(option: int)→ ldap_faker.types.LDAPOptionValue
This method returns the value of the ldap.ldap.ldapobject.LDAPObject` option specified by option.

Note: If your code did not call FakeLDAPOption.set_option for this option, we’ll get KeyError

3.6. Developer Interface 29

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/functions.html#int

python-ldap-faker, Release 1.1.0

Parameters
option – the option

Raises
• ValueError – option is not a valid python-ldap option

• KeyError – option is not a valid python-ldap option

Returns
The value of the option

simple_bind_s(who: str = None, cred: str = None, serverctrls: List[LDAPControl] = None, clientctrls:
List[LDAPControl] = None)→ Optional[Tuple[Union[int, str], List[Tuple[str, Dict[str,
List[bytes]]]], int, List[LDAPControl]]]

Perform a bind. This will look in the object store for an object with dn of who and compare cred to the
userPassword attribute for that object.

Keyword Arguments
• who – the dn of the user with which to bind

• cred – the password for that user

Raises
ldap.INVALID_CREDENTIALS – the who did not match the cred

whoami_s()→ str
This synchronous method implements the LDAP “Who Am I?” extended operation.

It is useful for finding out to find out which identity is assumed by the LDAP server after a bind.

Returns
{the dn}”

Return type
Empty string if we haven’t bound as an identity, otherwise “dn

search_ext(base: str, scope: int, filterstr: str = '(objectClass=*)', attrlist: List[str] = None, attrsonly: int =
0, serverctrls: List[LDAPControl] = None, clientctrls: List[LDAPControl] = None, timeout: int
= -1, sizelimit: int = 0)→ int

result3(msgid: int = -1, all: int = 1, timeout: int = None)→ Tuple[Union[int, str], List[Tuple[str, Dict[str,
List[bytes]]]], int, List[LDAPControl]]

Retrieve the results of our FakeLDAPObject.search_ext call.

Note: The all and timeout keyword arguments are ignored here.

Keyword Arguments
• msgid – the msgid returned by the FakeLDAPObject.search_ext call

• all – if 1, return all results at once; if 0, return them one at a time (ignored)

Returns
A ldap.result3 4-tuple.

search_s(base: str, scope: int, filterstr: str = '(objectClass=*)', attrlist: List[str] = None, attrsonly: int = 0)
→ List[ldap_faker.types.LDAPRecord]

30 Chapter 3. Quickstart

https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/exceptions.html#KeyError
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.List
https://www.python-ldap.org/en/latest/reference/ldap-controls.html#ldap.controls.LDAPControl
https://docs.python.org/3/library/typing.html#typing.List
https://www.python-ldap.org/en/latest/reference/ldap-controls.html#ldap.controls.LDAPControl
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.List
https://www.python-ldap.org/en/latest/reference/ldap-controls.html#ldap.controls.LDAPControl
https://www.python-ldap.org/en/latest/reference/ldap.html#ldap.INVALID_CREDENTIALS
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.List
https://www.python-ldap.org/en/latest/reference/ldap-controls.html#ldap.controls.LDAPControl
https://docs.python.org/3/library/typing.html#typing.List
https://www.python-ldap.org/en/latest/reference/ldap-controls.html#ldap.controls.LDAPControl
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.List
https://www.python-ldap.org/en/latest/reference/ldap-controls.html#ldap.controls.LDAPControl
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.List

python-ldap-faker, Release 1.1.0

start_tls_s()→ None
Negotiate TLS with server.

This sets our tls_enabled attribute to True.

Raises
ldap.LOCAL_ERROR – start_tls_s was done twice on the same connection

compare_s(dn: str, attr: str, value: bytes)→ bool
Perform an LDAP comparison between the attribute named attr of entry dn, and the value value. For
multi-valued attributes, the test is whether any of the values match value.

Parameters
• dn – the dn of the object to look at

• attr – the name of the attribute on our object to compare

• value – the value to which to compare the object value

Raises
ldap.NO_SUCH_OBJECT – no object with dn of dn exists in our object store

Returns
True if the values are equal, False otherwise.

modify_s(dn, modlist: ldap_faker.types.ModList)→ Tuple[Union[int, str], List[Tuple[str, Dict[str,
List[bytes]]]], int, List[LDAPControl]]

Modify the object with dn of dn using the modlist modlist.

Each element in the list modlist should be a tuple of the form (mod_op: int, mod_type: str,
mod_vals: Union[bytes, List[bytes]]), where mod_op indicates the operation (one of ldap.
MOD_ADD, ldap.MOD_DELETE, or ldap.MOD_REPLACE, mod_type is a string indicating the attribute type
name, and mod_vals is either a bytes value or a list of bytes values to add, delete or replace respectively.
For the delete operation, mod_vals may be None indicating that all attributes are to be deleted.

Note: ldap.modlist.modifyModlist MAY be your friend here for generating modlists. Do read the
note in those docs about ldap.MOD_DELETE / ldap.MOD_ADD vs. ldap.MOD_REPLACE to see whether that
will affect you poorly.

Example

Here is an example of constructing a modlist for modify_s:

>>> import ldap
>>> modlist = [

(ldap.MOD_ADD, 'mail', [b'user@example.com', b'user+foo@example.com']),
(ldap.MOD_REPLACE, 'cn', [b'My Name']),
(ldap.MOD_DELETE, 'gecos', None)

]

Parameters
• dn – the dn of the object to delete

• modlist – a modlist suitable for modify_s

Raises

3.6. Developer Interface 31

https://docs.python.org/3/library/constants.html#None
https://www.python-ldap.org/en/latest/reference/ldap.html#ldap.LOCAL_ERROR
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/functions.html#bool
https://www.python-ldap.org/en/latest/reference/ldap.html#ldap.NO_SUCH_OBJECT
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.List
https://www.python-ldap.org/en/latest/reference/ldap-controls.html#ldap.controls.LDAPControl
https://www.python-ldap.org/en/latest/reference/ldap-modlist.html#ldap.modlist.modifyModlist

python-ldap-faker, Release 1.1.0

• ldap.NO_SUCH_OBJECT – no object with dn of dn exists in our object store

• ldap.TYPE_OR_VALUE_EXISTS – you tried to add an value to an attribute, but it was
already in the value list

• ldap.INSUFFICIENT_ACCESS – you need to do a non-anonymous bind before doing this

Returns
A ldap.result3 type 4-tuple.

delete_s(dn: str)→ None
Delete the object with dn of dn from our object store.

Each element in the list modlist should be a tuple of the form (mod_type: str, mod_vals:
List[bytes]), where mod_type is a string indicating the attribute type name, and mod_vals is either
a string value or a list of string values to add, delete or replace respectively. For the delete operation,
mod_vals may be None indicating that all attributes are to be deleted.

Parameters
dn – the dn of the object to delete

Raises
• ldap.NO_SUCH_OBJECT – no object with dn of dn exists in our object store

• ldap.INSUFFICIENT_ACCESS – you need to do a non-anonymous bind before doing this

add_s(dn: str, modlist: ldap_faker.types.AddModList)→ None
Add an object with dn of dn.

modlist is similar the one passed to modify_s, except that the operation integer is omitted from the tuples
in modlist. You might want to look into sub-module refmodule{ldap.modlist} for generating the modlist.

Example

Here is an example of constructing a modlist for add_s:

>>> modlist = [
('uid', [b'user']),
('gidNumber', [b'1000']),
('uidNumber', [b'1000']),
('loginShell', [b'/bin/bash']),
('homeDirectory', [b'/home/user']),
('userPassword', [b'the password']),
('cn', [b'My Name']),
('objectClass', [b'top', b'posixAccount']),

]

Parameters
• dn – the dn of the object to add

• modlist – the add modlist

Raises
• ldap.ALREADY_EXISTS – an object with dn of dn already exists in our object store

• ldap.INSUFFICIENT_ACCESS – you need to do a non-anonymous bind before doing this

32 Chapter 3. Quickstart

https://www.python-ldap.org/en/latest/reference/ldap.html#ldap.NO_SUCH_OBJECT
https://www.python-ldap.org/en/latest/reference/ldap.html#ldap.TYPE_OR_VALUE_EXISTS
https://www.python-ldap.org/en/latest/reference/ldap.html#ldap.INSUFFICIENT_ACCESS
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://www.python-ldap.org/en/latest/reference/ldap.html#ldap.NO_SUCH_OBJECT
https://www.python-ldap.org/en/latest/reference/ldap.html#ldap.INSUFFICIENT_ACCESS
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://www.python-ldap.org/en/latest/reference/ldap.html#ldap.ALREADY_EXISTS
https://www.python-ldap.org/en/latest/reference/ldap.html#ldap.INSUFFICIENT_ACCESS

python-ldap-faker, Release 1.1.0

rename_s(dn: str, newrdn: str, newsuperior: str = None, delold: int = 1, serverctrls: List[LDAPControl] =
None, clientctrls: List[LDAPControl] = None)→ None

Take dn (the DN of the entry whose RDN is to be changed, and newrdn, the new RDN to give to the entry.
The optional parameter newsuperior is used to specify a new parent DN for moving an entry in the tree
(not all LDAP servers support this).

Parameters
• dn – the dn of the object to rename

• newrdn – the new RDN

Keyword Arguments
• newsuperior – the new basedn

• delold – if 1, delete the old entry after renaming, if 0, don’t.

Raises
• ldap.NO_SUCH_OBJECT – no object with dn of dn exists in our object store

• ldap.INSUFFICIENT_ACCESS – you need to do a non-anonymous bind before doing this

unbind_s()→ None
Unbind from the server.

This sets our bound_dn to None.

3.6.3 LDAP Server like objects

class ldap_faker.LDAPServerFactory

This class registers ObjectStore objects to be used by FakeLDAP.initialize() in constructing
FakeLDAPObject objects. ObjectStore objects are named registered here by LDAP uri (in reality, any string).

You may do one of two things, but not both:

• Configure a default ObjectStore that will be used for all ldap.initialize calls regardless of uri

• Assign a specific ObjectStore for each uri you will be using in your code.

Example

To register a default ObjectStore that will be used for every uri passed to FakeLDAP.initialize:

>>> from ldap_faker import ObjectStore, LDAPServerFactory, FakeLDAP
>>> data = [...] # some LDAP records
>>> factory = LDAPServerFactory()
>>> store = ObjectStore(objects=data)
>>> factory.register(store)
>>> fake_ldap = FakeLDAP(factory)

Now any time your code does an ldap.initialize() to our patched version of that function, it will get a a
FakeLDAPObject configured with a copy.deepcopy of the ObjectStore store, no matter what uri it passes
to ldap.initialize().

To register a different ObjectStores that will be used for specific uris:

3.6. Developer Interface 33

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.List
https://www.python-ldap.org/en/latest/reference/ldap-controls.html#ldap.controls.LDAPControl
https://docs.python.org/3/library/typing.html#typing.List
https://www.python-ldap.org/en/latest/reference/ldap-controls.html#ldap.controls.LDAPControl
https://docs.python.org/3/library/constants.html#None
https://www.python-ldap.org/en/latest/reference/ldap.html#ldap.NO_SUCH_OBJECT
https://www.python-ldap.org/en/latest/reference/ldap.html#ldap.INSUFFICIENT_ACCESS
https://docs.python.org/3/library/constants.html#None
https://www.python-ldap.org/en/latest/reference/ldap.html#ldap.initialize
https://docs.python.org/3/library/copy.html#copy.deepcopy

python-ldap-faker, Release 1.1.0

>>> from ldap_faker import ObjectStore, Servers
>>> data1 = [...] # some LDAP records
>>> factory = LDAPServerFactory()
>>> store1 = ObjectStore(objects=data1)
>>> factory.register(store1, uri='ldap://server1')
>>> data2 = [...] # some different LDAP records
>>> store2 = ObjectStore(objects=data2)
>>> factory.register(store2, uri='ldap://server2')
>>> fake_ldap = FakeLDAP(factory)

Now if your code does ldap.initialize('ldap://server1'), it will get a FakeLDAPObject configured
with a copy.deepcopy of the ObjectStore object store1, while if it does ldap.initialize('ldap://
server2'), it will get a FakeLDAPObject configured with a copy.deepcopy of the ObjectStore object
store2.

load_from_file(filename: str, uri: Optional[str] = None, tags: Optional[List[str]] = None)→ None
Given a file path to a JSON file with the objects for an ObjectStore, create a new ObjectStore, load it
with that JSON File and register it with uri of uri.

Parameters
filename – the full path to our JSON file

Keyword Arguments
• uri – the uri to assign to the ObjectStore we create

• tags – the list of tags to apply to the the ObjectStore

Raises
• ValueError – raised if a default is already configured while trying to register the
ObjectStore with a specific uri

• RuntimeWarning – raised if we try to overwrite an already registered object store with our
new one

register(store: ObjectStore, uri: Optional[str] = None)→ None
Register a new ObjectStore to be used as our fake LDAP server for when we run our fake initialize
function.

Parameters
store – a configured ObjectStore

Keyword Arguments
uri – the LDAP uri to associated with directory

Raises
• ValueError – raised if a default is already configured while trying to register an
ObjectStore with a specific uri

• RuntimeWarning – raised if we try to overwrite an already registered object store with a
new one

get(uri: str)→ ObjectStore
Return a copy.deepcopy of the ObjectStore identified by uri.

Parameters
uri – use this uri to look up which ObjectStore to use

34 Chapter 3. Quickstart

https://docs.python.org/3/library/copy.html#copy.deepcopy
https://docs.python.org/3/library/copy.html#copy.deepcopy
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/exceptions.html#RuntimeWarning
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/exceptions.html#RuntimeWarning
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/copy.html#copy.deepcopy

python-ldap-faker, Release 1.1.0

Raises
ldap.SERVER_DOWN – no ObjectStore could be found for uri

Returns
A copy.deepcopy of the ObjectStore

class ldap_faker.ObjectStore(tags: Optional[List[str]] = None)
This class represents our actual simulated LDAP object store. Copies of this will be used to configure
FakeLDAPObject objects.

raw_objects: ldap_faker.types.RawLDAPObjectStore

LDAP records as they would have been returned by python-ldap`

objects: ldap_faker.types.LDAPObjectStore

LDAP records set up to make searching better

tags: List[str]

used when filtering hooks to apply

controls: Dict[str, Any]

can be used by hooks to store state

operational_attributes: Set[str]

list of attributes that have to be specifically requested

convert_LDAPData(data: ldap_faker.types.LDAPData)→ ldap_faker.types.CILDAPData
Convert an incoming LDAPData` dict (``Dict[str, List[bytes]]) to a CILDAPData dict
(CaseInsensitiveDict[str, List[str]]))

We need the data dict to have values as List[str] so that our filtering works properly – ldap_filter.
Filter.match only works with strings, not bytes.

Parameters
data – the LDAPData dict to convert

Returns
The convered CILDAPData dict.

load_objects(filename: str)→ None
Load a list of LDAP records stored as JSON from a file into our internal database. Use this when setting
up the data you will use to run your tests.

Note: One caveat with this method vs. ObjectStore.register_objects is that the records returned
by python-ldap are of type Tuple[str, Dict[str, List[bytes]]] but JSON has no concept of
bytes or tuple. Thus we will expect the LDAP records in the file to have type List[str, Dict[str,
List[str]]] and we will convert them to Tuple[str, Dict[str, List[bytes]]] before saving to
raw_objects

Parameters
filename – the path to the JSON file to load

Raises
• ldap.ALREADY_EXISTS – there is already an object in our object store with this dn

• ldap.INVALID_DN_SYNTAX – one of the object DNs is not well formed

3.6. Developer Interface 35

https://www.python-ldap.org/en/latest/reference/ldap.html#ldap.SERVER_DOWN
https://docs.python.org/3/library/copy.html#copy.deepcopy
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/typing.html#typing.Set
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://www.python-ldap.org/en/latest/reference/ldap.html#ldap.ALREADY_EXISTS
https://www.python-ldap.org/en/latest/reference/ldap.html#ldap.INVALID_DN_SYNTAX

python-ldap-faker, Release 1.1.0

register_objects(objs: List[ldap_faker.types.LDAPRecord])→ None
Load a list of LDAP records into our internal database. Use this when setting up the data you will use to
run your tests. Each record in the list should be in exactly the format that python-ldap itself returns: a
2-tuple with dn as the first element and the attribute/value dict as the second element.

Example

Adding a several PosixAccount objects:

>>> obj = [
(

'uid=user,ou=mydept,o=myorg,c=country',
{

'cn': [b'Firstname User1'],
'uid': [b'user'],
'uidNumber': [b'123'],
'gidNumber': [b'456'],
'homeDirectory': [b'/home/user'],
'loginShell': [b'/bin/bash'],
'userPassword': [b'the password'],
'objectclass': [b'posixAccount', b'top']

}
),
(

'uid=user2,ou=mydept,o=myorg,c=country',
{

'cn': [b'Firstname User2'],
'uid': [b'user2'],
'uidNumber': [b'124'],
'gidNumber': [b'457'],
'homeDirectory': [b'/home/user1'],
'loginShell': [b'/bin/bash'],
'userPassword': [b'the password'],
'objectclass': [b'posixAccount', b'top']

}
)

]
>>> directory = ObjectStore()
>>> directory.register_objects(obj)

Parameters
objs – A list of LDAP records as they would have been returned by ldap.ldapobject.
LDAPObject.search_s(). These are 2-tuples, where the first element is the dn (a str) and
the second element is a dict where the keys are str and the values are lists of bytes.

Raises
• ldap.ALREADY_EXISTS – there is already an object in our object store with this dn

• ldap.INVALID_DN_SYNTAX – one of the object DNs is not well formed

• TypeError – the LDAPData portion for an object was not of type Dict[str,
List[bytes]]

36 Chapter 3. Quickstart

https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/constants.html#None
https://www.python-ldap.org/en/latest/reference/ldap.html#ldap.ALREADY_EXISTS
https://www.python-ldap.org/en/latest/reference/ldap.html#ldap.INVALID_DN_SYNTAX
https://docs.python.org/3/library/exceptions.html#TypeError

python-ldap-faker, Release 1.1.0

register_object(obj: ldap_faker.types.LDAPRecord)→ None
Add an LDAP record our internal database. Use this to add a single record when setting up the data you
will use to run your tests. The data should be in exactly the format that python-ldap itself returns: a 2-tuple
with dn as the first element and the attribute/value dict as the second element.

Example

Adding a PosixAccount object:

>>> obj = (
'uid=user,ou=mydept,o=myorg,c=country',
{

'cn': [b'Firstname Lastname'],
'uid': [b'user'],
'uidNumber': [b'123'],
'gidNumber': [b'456'],
'homeDirectory': [b'/home/user'],
'loginShell': [b'/bin/bash'],
'userPassword': [b'the password']
'objectclass': [b'posixAccount', b'top']

}
)
>>> directory = ObjectStore()
>>> directory.register_object(obj)

Parameters
obj – An LDAP record as it would have been returned by ldap.ldapobject.LDAPObject.
search_s(). This is a 2-tuple, where the first element is the dn (a str) and the second
element is a dict where the keys are str and the values are lists of bytes.

Raises
• ldap.ALREADY_EXISTS – there is already an object in our object store with this dn

• ldap.INVALID_DN_SYNTAX – the DN is not well formed

• TypeError – the LDAPData portion was not of type Dict[str, List[bytes]]

property count

exists(dn: str, validate: bool = True)→ bool
Test whether an object with dn dn exists.

Parameters
dn – the dn of the object to look for

Keyword Arguments
validate – if True, validate that dn is a valid dn

Returns
True if the object exists, False otherwise.

get(dn: str)→ ldap_faker.types.LDAPData
Return all data for an object from our object store.

Parameters
dn – the dn of the object to copy.

3.6. Developer Interface 37

https://docs.python.org/3/library/constants.html#None
https://www.python-ldap.org/en/latest/reference/ldap.html#ldap.ALREADY_EXISTS
https://www.python-ldap.org/en/latest/reference/ldap.html#ldap.INVALID_DN_SYNTAX
https://docs.python.org/3/library/exceptions.html#TypeError
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str

python-ldap-faker, Release 1.1.0

Raises
ldap.NO_SUCH_OBJECT – no object with dn of dn exists in our object store

Returns
The data for an LDAP object

copy(dn: str)→ ldap_faker.types.LDAPData
Return a copy of the data for an object from our object store.

Parameters
dn – the dn of the object to copy.

Raises
ldap.NO_SUCH_OBJECT – no object with dn of dn exists in our object store

Returns
The data for an LDAP object

set(dn: str, data: ldap_faker.types.LDAPData, bind_dn: Optional[str] = None)→ None
Add or update data for the object with dn dn.

Parameters
• dn – the dn of the object to copy.

• data – the dict of data for this object

Keyword Arguments
bind_dn – the dn of the user doing the set, if any

Raises
• ldap.INVALID_DN_SYNTAX – the DN is not well formed

• TypeError – the LDAPData portion was not of type Dict[str, List[bytes]]

update(dn: str, modlist: ldap_faker.types.ModList, bind_dn: Optional[str] = None)→ None
Modify the object with dn of dn using the modlist modlist.

Each element in the list modlist should be a tuple of the form (mod_op: int, mod_type: str,
mod_vals: Union[bytes, List[bytes]]), where mod_op indicates the operation (one of ldap.
MOD_ADD, ldap.MOD_DELETE, or ldap.MOD_REPLACE, mod_type is a string indicating the attribute type
name, and mod_vals is either a bytes value or a list of bytes values to add, delete or replace respectively.
For the delete operation, mod_vals may be None indicating that all attributes are to be deleted.

Note: ldap.modlist.modifyModlist MAY be your friend here for generating modlists. Do read the
note in those docs about ldap.MOD_DELETE / ldap.MOD_ADD vs. ldap.MOD_REPLACE to see whether that
will affect you poorly.

38 Chapter 3. Quickstart

https://www.python-ldap.org/en/latest/reference/ldap.html#ldap.NO_SUCH_OBJECT
https://docs.python.org/3/library/stdtypes.html#str
https://www.python-ldap.org/en/latest/reference/ldap.html#ldap.NO_SUCH_OBJECT
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://www.python-ldap.org/en/latest/reference/ldap.html#ldap.INVALID_DN_SYNTAX
https://docs.python.org/3/library/exceptions.html#TypeError
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://www.python-ldap.org/en/latest/reference/ldap-modlist.html#ldap.modlist.modifyModlist

python-ldap-faker, Release 1.1.0

Example

Here is an example of constructing a modlist for modify_s:

>>> import ldap
>>> modlist = [

(ldap.MOD_ADD, 'mail', [b'user@example.com', b'user+foo@example.com']),
(ldap.MOD_REPLACE, 'cn', [b'My Name']),
(ldap.MOD_DELETE, 'gecos', None)

]

Parameters
• dn – the dn of the object to delete

• modlist – a modlist suitable for modify_s

Keyword Arguments
bind_dn – the dn of the user doing the update, if any

Raises
• ldap.INVALID_DN_SYNTAX – the dn was not well-formed

• ldap.NO_SUCH_OBJECT – no object with dn of dn exists in our object store

• ldap.TYPE_OR_VALUE_EXISTS – you tried to add an value to an attribute, but it was
already in the value list

• ldap.INSUFFICIENT_ACCESS – you need to do a non-anonymous bind before doing this

create(dn: str, modlist: ldap_faker.types.AddModList, bind_dn: Optional[str] = None)→ None
Create an object in our store with dn of dn.

modlist is similar the one passed to modify_s, except that the operation integer is omitted from the tuples
in modlist. You might want to look into sub-module ldap.modlist for generating the modlist.

Example

Here is an example of constructing a modlist for create:

>>> modlist = [
('uid', [b'user']),
('gidNumber', [b'1000']),
('uidNumber', [b'1000']),
('loginShell', [b'/bin/bash']),
('homeDirectory', [b'/home/user']),
('userPassword', [b'the password']),
('cn', [b'My Name']),
('objectClass', [b'top', b'posixAccount']),

]

Parameters
• dn – the dn of the object to add

• modlist – the add modlist

3.6. Developer Interface 39

https://www.python-ldap.org/en/latest/reference/ldap.html#ldap.INVALID_DN_SYNTAX
https://www.python-ldap.org/en/latest/reference/ldap.html#ldap.NO_SUCH_OBJECT
https://www.python-ldap.org/en/latest/reference/ldap.html#ldap.TYPE_OR_VALUE_EXISTS
https://www.python-ldap.org/en/latest/reference/ldap.html#ldap.INSUFFICIENT_ACCESS
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None

python-ldap-faker, Release 1.1.0

Keyword Arguments
bind_dn – the dn of the user doing the create, if any

Raises
• ldap.INVALID_DN_SYNTAX – the dn was not well-formed

• ldap.ALREADY_EXISTS – an object with dn of dn already exists in our object store

• ldap.INSUFFICIENT_ACCESS – you need to do a non-anonymous bind before doing this

delete(dn: str, bind_dn: Optional[str] = None)→ None
Delete an object from our objects directory.

Parameters
dn – the dn of the object to delete

Keyword Arguments
bind_dn – the dn of the user doing the delete, if any

Raises
ldap.INVALID_DN_SYNTAX – the dn was not well-formed

search_base(base: str, filterstr: str, attrlist: Optional[List[str]] = None)→
ldap_faker.types.LDAPSearchResult

Do a ldap.SCOPE_BASE search. Return the requested attributes of the object in our object store with dn
of base that also matches filterstr.

Note: We return a copy.deepcopy of the object, not the actual object. This ensures that if the caller
modifies the object they don’t update the objects in us unintentionally.

Note: Some attributes are “operational” and are not returned by default They must be named specifically
if you want them. Example:

>>> store.search_base('thebasedn', '(objectclass=*)', ['*', 'createTimestamp'])

Parameters
• base – the dn of the object to return

• filterstr – the ldap filter string

Keyword Arguments
attrlist – the list of attributes to return for each object

Raises
• ldap.INVALID_DN_SYNTAX – base was not a well-formed DN

• ldap.FILTER_ERROR – filterstr is has bad filter syntax

• ldap.NO_SUCH_OBJECT – no object with dn of base exists in the object store

Returns
A list with one element – the object with dn of base.

40 Chapter 3. Quickstart

https://www.python-ldap.org/en/latest/reference/ldap.html#ldap.INVALID_DN_SYNTAX
https://www.python-ldap.org/en/latest/reference/ldap.html#ldap.ALREADY_EXISTS
https://www.python-ldap.org/en/latest/reference/ldap.html#ldap.INSUFFICIENT_ACCESS
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://www.python-ldap.org/en/latest/reference/ldap.html#ldap.INVALID_DN_SYNTAX
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/copy.html#copy.deepcopy
https://www.python-ldap.org/en/latest/reference/ldap.html#ldap.INVALID_DN_SYNTAX
https://www.python-ldap.org/en/latest/reference/ldap.html#ldap.FILTER_ERROR
https://www.python-ldap.org/en/latest/reference/ldap.html#ldap.NO_SUCH_OBJECT

python-ldap-faker, Release 1.1.0

search_onelevel(base: str, filterstr: str, attrlist: Optional[List[str]] = None)→
ldap_faker.types.LDAPSearchResult

Do a ldap.SCOPE_ONELEVEL search, for objects directly under basedn base that match filterstr.

Note: We return a copy.deepcopy of each object, not the actual object. This ensures that if the caller
modifies the object they don’t update the objects in us unintentionally.

Parameters
• base – the dn of the object to return

• filterstr – the ldap filter string

Keyword Arguments
attrlist – the list of attributes to return for each object

Raises
• ldap.INVALID_DN_SYNTAX – base was not a well-formed DN

• ldap.FILTER_ERROR – filterstr is has bad filter syntax

Returns
A list of LDAP objects – 2-tuples of (dn, data).

search_subtree(base: str, filterstr: str, attrlist: Optional[List[str]] = None, include_operational_attributes:
bool = False)→ ldap_faker.types.LDAPSearchResult

Do a ldap.SCOPE_SUBTREE search, for objects under basedn base that match filterstr.

Parameters
• base – the dn of the object to return

• filterstr – the ldap filter string

Note: We return a copy.deepcopy of each object, not the actual object. This ensures that if the caller
modifies the object they don’t update the objects in us unintentionally.

Keyword Arguments
• attrlist – the list of attributes to return for each object

• include_operational_attributes – include all operational attributes even if they are
not named in attrlist

Raises
• ldap.INVALID_DN_SYNTAX – base was not a well-formed DN

• ldap.FILTER_ERROR – filterstr is has bad filter syntax

Returns
A list of LDAP objects – 2-tuples of (dn, data).

class ldap_faker.OptionStore

We use this to store options set via set_option.

3.6. Developer Interface 41

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/copy.html#copy.deepcopy
https://www.python-ldap.org/en/latest/reference/ldap.html#ldap.INVALID_DN_SYNTAX
https://www.python-ldap.org/en/latest/reference/ldap.html#ldap.FILTER_ERROR
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/copy.html#copy.deepcopy
https://www.python-ldap.org/en/latest/reference/ldap.html#ldap.INVALID_DN_SYNTAX
https://www.python-ldap.org/en/latest/reference/ldap.html#ldap.FILTER_ERROR

python-ldap-faker, Release 1.1.0

set(option: int, invalue: ldap_faker.types.LDAPOptionValue)→ None
Set an option.

Parameters
• option – the code for the option (e.g. ldap.OPT_X_TLS_NEWCTX)

• value – the value we want the option to be set to

Raises
ValueError – option is not a valid python-ldap option

get(option: int)→ ldap_faker.types.LDAPOptionValue
Get the value for a previosly set option that was set via OptionStore.set.

Parameters
option – the code for the option (e.g. ldap.OPT_X_TLS_NEWCTX)

Raises
ValueError – option is not a valid python-ldap option

Returns
The value for the option, or the default.

3.6.4 Hook management

ldap_faker.hooks = <ldap_faker.hooks.HookRegistry object>

class ldap_faker.Hook(func: Callable, tags: List[str])

func: Callable

tags: List[str]

class ldap_faker.HookDefinition(name: str, signature: str)
The definition for a hook. This is comprised of a name and a signature.

Example

>>> hook_def = HookDefinition(
name='pre_save",
signature="Callable[[ObjectStore, LDAPRecord], None]

)
>>> hook_def.name
"pre_save"
>>> hook_def.signature
"Callable[[ObjectStore, LDAPRecord], None]"

name

the name of the hook, e.g. “pre_save”

Type
str

42 Chapter 3. Quickstart

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://www.python-ldap.org/en/latest/reference/ldap.html#ldap.OPT_X_TLS_NEWCTX
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/functions.html#int
https://www.python-ldap.org/en/latest/reference/ldap.html#ldap.OPT_X_TLS_NEWCTX
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

python-ldap-faker, Release 1.1.0

signature

the python type annotation signature that the hook should implement, e.g. “Callable[[ObjectStore,
LDAPRecord], None]”

Type
str

name: str

signature: str

class ldap_faker.HookRegistry

property definitions: List[HookDefinition]

Return a list of known hooks definitions as

register_hook_definition(hook_name: str, signature: str)→ None
Register a hook definition. Hook definitions define what hooks exist, and what their function signature
must be.

Example

>>> hooks = HookRegistry()
>>> hooks.register_definition('pre_set', 'Callable[[ObjectStore, LDAPRecord],␣
→˓None]')

Parameters
• hook_name – the name of the hook

• signature – A string in Python type annotation format describing the signature the hook
must have

register_hook(hook_name: str, func: Callable, tags: Optional[List[str]] = None)→ None
Register a hook for this object store. Hooks are functions with this signature:

def myhook(store: ObjectStore, record: LDAPRecord) -> None:

Use hooks to implement side-effects on select ObjectStore methods.

Example

To register a hook that updates a an attribute named ``modifyTimestamp` before saving a record to the
object store, you could define the hook like so:

def update_modifyTimestamp(store: ObjectStore, record: LDAPRecord) -> None:
record[1][‘modifyTimestamp’] = datetime.datetime.utcnow().strftime(‘%Y%m%d%H%M%SZ’)

and register it as a pre_modify method like so:

>>> store = ObjectStore()
>>> store.register_hook('pre_set', update_modifyTimestamp)

Note: Hooks for a particular hook_name are applied in the order they are registered.

3.6. Developer Interface 43

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None

python-ldap-faker, Release 1.1.0

Parameters
• hook_name – the name of the known hook to which register this func

• func – the hook function

Raises
ValueError – hook_name is not a known hook

get(hook_name: str, tags: Optional[List[str]] = None)→ List[Callable]
Get a list of hook callables for the hook named by name, possibly filtering hooks by tag.

Tag filtering rules:

• If a hook has no tags associated with it, it always applies.

• Otherwise, if at least one of the hooks tags are present in tags, the hook applies.

Parameters
hook_name – the name of the hook for which to return functions

Keyword Arguments
tags – if provided, filter the available hook functions to include only those with tags listed
in tags

Raises
ValueError – there is no known hook with name hook_name

Returns
A list of callables.

3.6.5 Type Aliases

ldap_faker.types.LDAPOptionValue

The central part of internal API.

This represents a generic version of type ‘origin’ with type arguments ‘params’. There are two kind of these
aliases: user defined and special. The special ones are wrappers around builtin collections and ABCs in collec-
tions.abc. These must have ‘name’ always set. If ‘inst’ is False, then the alias can’t be instantiated, this is used
by e.g. typing.List and typing.Dict.

alias of Union[int, str]

ldap_faker.types.LDAPData

The central part of internal API.

This represents a generic version of type ‘origin’ with type arguments ‘params’. There are two kind of these
aliases: user defined and special. The special ones are wrappers around builtin collections and ABCs in collec-
tions.abc. These must have ‘name’ always set. If ‘inst’ is False, then the alias can’t be instantiated, this is used
by e.g. typing.List and typing.Dict.

alias of Dict[str, List[bytes]]

ldap_faker.types.LDAPRecord

The central part of internal API.

This represents a generic version of type ‘origin’ with type arguments ‘params’. There are two kind of these
aliases: user defined and special. The special ones are wrappers around builtin collections and ABCs in collec-
tions.abc. These must have ‘name’ always set. If ‘inst’ is False, then the alias can’t be instantiated, this is used
by e.g. typing.List and typing.Dict.

44 Chapter 3. Quickstart

https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/stdtypes.html#bytes

python-ldap-faker, Release 1.1.0

alias of Tuple[str, Dict[str, List[bytes]]]

ldap_faker.types.LDAPSearchResult

The central part of internal API.

This represents a generic version of type ‘origin’ with type arguments ‘params’. There are two kind of these
aliases: user defined and special. The special ones are wrappers around builtin collections and ABCs in collec-
tions.abc. These must have ‘name’ always set. If ‘inst’ is False, then the alias can’t be instantiated, this is used
by e.g. typing.List and typing.Dict.

alias of List[Tuple[str, Dict[str, List[bytes]]]]

ldap_faker.types.ModList

The central part of internal API.

This represents a generic version of type ‘origin’ with type arguments ‘params’. There are two kind of these
aliases: user defined and special. The special ones are wrappers around builtin collections and ABCs in collec-
tions.abc. These must have ‘name’ always set. If ‘inst’ is False, then the alias can’t be instantiated, this is used
by e.g. typing.List and typing.Dict.

alias of List[Tuple[int, str, List[bytes]]]

ldap_faker.types.AddModList

The central part of internal API.

This represents a generic version of type ‘origin’ with type arguments ‘params’. There are two kind of these
aliases: user defined and special. The special ones are wrappers around builtin collections and ABCs in collec-
tions.abc. These must have ‘name’ always set. If ‘inst’ is False, then the alias can’t be instantiated, this is used
by e.g. typing.List and typing.Dict.

alias of List[Tuple[str, List[bytes]]]

ldap_faker.types.LDAPFixtureList

The central part of internal API.

This represents a generic version of type ‘origin’ with type arguments ‘params’. There are two kind of these
aliases: user defined and special. The special ones are wrappers around builtin collections and ABCs in collec-
tions.abc. These must have ‘name’ always set. If ‘inst’ is False, then the alias can’t be instantiated, this is used
by e.g. typing.List and typing.Dict.

alias of Union[str, Tuple[str, List[str]], List[Tuple[str, str, List[str]]]]

3.6. Developer Interface 45

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/stdtypes.html#str

python-ldap-faker, Release 1.1.0

46 Chapter 3. Quickstart

PYTHON MODULE INDEX

l
ldap_faker, 21

47

python-ldap-faker, Release 1.1.0

48 Python Module Index

INDEX

A
add_s() (ldap_faker.FakeLDAPObject method), 32
AddModList (in module ldap_faker.types), 45
api_name (ldap_faker.LDAPCallRecord attribute), 24
args (ldap_faker.LDAPCallRecord attribute), 24
assertGlobalFunctionCalled()

(ldap_faker.LDAPFakerMixin method), 23
assertGlobalOptionSet()

(ldap_faker.LDAPFakerMixin method), 23
assertLDAPConnectionMethodCalled()

(ldap_faker.LDAPFakerMixin method), 23
assertLDAPConnectionMethodCalledAfter()

(ldap_faker.LDAPFakerMixin method), 24
assertLDAPConnectionOptionSet()

(ldap_faker.LDAPFakerMixin method), 23

B
bound_dn (ldap_faker.FakeLDAPObject attribute), 29

C
CallHistory (class in ldap_faker), 24
calls (ldap_faker.CallHistory property), 25
calls (ldap_faker.FakeLDAP attribute), 26
calls (ldap_faker.FakeLDAPObject attribute), 29
compare_s() (ldap_faker.FakeLDAPObject method), 31
connection_calls() (ldap_faker.FakeLDAP method),

28
connections (ldap_faker.FakeLDAP attribute), 26
controls (ldap_faker.ObjectStore attribute), 35
convert_LDAPData() (ldap_faker.ObjectStore method),

35
copy() (ldap_faker.ObjectStore method), 38
count (ldap_faker.ObjectStore property), 37
create() (ldap_faker.ObjectStore method), 39

D
definitions (ldap_faker.HookRegistry property), 43
delete() (ldap_faker.ObjectStore method), 40
delete_s() (ldap_faker.FakeLDAPObject method), 32
deref (ldap_faker.FakeLDAPObject attribute), 29

E
exists() (ldap_faker.ObjectStore method), 37

F
fake_ldap (ldap_faker.LDAPFakerMixin attribute), 22
FakeLDAP (class in ldap_faker), 26
FakeLDAPObject (class in ldap_faker), 28
filter_calls() (ldap_faker.CallHistory method), 25
func (ldap_faker.Hook attribute), 42

G
get() (ldap_faker.HookRegistry method), 44
get() (ldap_faker.LDAPServerFactory method), 34
get() (ldap_faker.ObjectStore method), 37
get() (ldap_faker.OptionStore method), 42
get_connections() (ldap_faker.FakeLDAP method),

28
get_connections() (ldap_faker.LDAPFakerMixin

method), 23
get_option() (ldap_faker.FakeLDAP method), 28
get_option() (ldap_faker.FakeLDAPObject method),

29

H
has_connection() (ldap_faker.FakeLDAP method), 28
Hook (class in ldap_faker), 42
HookDefinition (class in ldap_faker), 42
HookRegistry (class in ldap_faker), 43
hooks (in module ldap_faker), 42
hostname (ldap_faker.FakeLDAPObject attribute), 29

I
initialize() (ldap_faker.FakeLDAP method), 27

L
last_connection() (ldap_faker.LDAPFakerMixin

method), 23
ldap_faker

module, 21
ldap_fixtures (ldap_faker.LDAPFakerMixin at-

tribute), 22

49

python-ldap-faker, Release 1.1.0

ldap_modules (ldap_faker.LDAPFakerMixin attribute),
22

LDAPCallRecord (class in ldap_faker), 24
LDAPData (in module ldap_faker.types), 44
LDAPFakerMixin (class in ldap_faker), 21
LDAPFixtureList (in module ldap_faker.types), 45
LDAPOptionValue (in module ldap_faker.types), 44
LDAPRecord (in module ldap_faker.types), 44
LDAPSearchResult (in module ldap_faker.types), 45
LDAPServerFactory (class in ldap_faker), 33
load_from_file() (ldap_faker.LDAPServerFactory

method), 34
load_objects() (ldap_faker.ObjectStore method), 35
load_servers() (ldap_faker.LDAPFakerMixin class

method), 22

M
modify_s() (ldap_faker.FakeLDAPObject method), 31
ModList (in module ldap_faker.types), 45
module

ldap_faker, 21

N
name (ldap_faker.HookDefinition attribute), 42, 43
names (ldap_faker.CallHistory property), 25
network_timeout (ldap_faker.FakeLDAPObject at-

tribute), 29

O
objects (ldap_faker.ObjectStore attribute), 35
ObjectStore (class in ldap_faker), 35
operational_attributes (ldap_faker.ObjectStore at-

tribute), 35
options (ldap_faker.FakeLDAP attribute), 26
options (ldap_faker.FakeLDAPObject attribute), 29
OptionStore (class in ldap_faker), 41

P
protocol_version (ldap_faker.FakeLDAPObject

attribute), 29

R
raw_objects (ldap_faker.ObjectStore attribute), 35
register() (ldap_faker.LDAPServerFactory method),

34
register_hook() (ldap_faker.HookRegistry method),

43
register_hook_definition()

(ldap_faker.HookRegistry method), 43
register_object() (ldap_faker.ObjectStore method),

36
register_objects() (ldap_faker.ObjectStore method),

35

rename_s() (ldap_faker.FakeLDAPObject method), 32
resolve_file() (ldap_faker.LDAPFakerMixin class

method), 22
result3() (ldap_faker.FakeLDAPObject method), 30

S
search_base() (ldap_faker.ObjectStore method), 40
search_ext() (ldap_faker.FakeLDAPObject method),

30
search_onelevel() (ldap_faker.ObjectStore method),

40
search_s() (ldap_faker.FakeLDAPObject method), 30
search_subtree() (ldap_faker.ObjectStore method),

41
server_factory (ldap_faker.LDAPFakerMixin at-

tribute), 22
set() (ldap_faker.ObjectStore method), 38
set() (ldap_faker.OptionStore method), 41
set_option() (ldap_faker.FakeLDAP method), 27
set_option() (ldap_faker.FakeLDAPObject method),

29
setUp() (ldap_faker.LDAPFakerMixin method), 23
setUpClass() (ldap_faker.LDAPFakerMixin class

method), 22
signature (ldap_faker.HookDefinition attribute), 42, 43
simple_bind_s() (ldap_faker.FakeLDAPObject

method), 30
sizelimit (ldap_faker.FakeLDAPObject attribute), 29
start_tls_s() (ldap_faker.FakeLDAPObject method),

30
store (ldap_faker.FakeLDAPObject attribute), 29

T
tags (ldap_faker.Hook attribute), 42
tags (ldap_faker.ObjectStore attribute), 35
tearDown() (ldap_faker.LDAPFakerMixin method), 23
tearDownClass() (ldap_faker.LDAPFakerMixin class

method), 23
timelimit (ldap_faker.FakeLDAPObject attribute), 29
timeout (ldap_faker.FakeLDAPObject attribute), 29
tls_enabled (ldap_faker.FakeLDAPObject attribute),

29

U
unbind_s() (ldap_faker.FakeLDAPObject method), 33
update() (ldap_faker.ObjectStore method), 38
uri (ldap_faker.FakeLDAPObject attribute), 28

W
whoami_s() (ldap_faker.FakeLDAPObject method), 30

50 Index

	Installation
	Features:
	Quickstart
	Faking LDAP servers
	Structure of LDAP records
	LDAPServerFactory
	ObjectStore
	Data Types for ObjectStore.register_object(s)
	File format for ObjectStore.load_objects

	Specific LDAP implementations supported
	Redhat Directory Server/389
	Features supported

	Authentication and Authorization
	Authorization within python-ldap-faker
	Anonymous binds
	Authenticated binds

	Using ldap_faker with unittest
	Configuring your LDAPFakerMixin TestCase
	LDAPFakerMixin.ldap_modules
	LDAPFakerMixin.ldap_fixtures

	Test isolation
	Test support offered by LDAPFakerMixin

	Hooks: modifying ObjectStore behavior
	Registering hooks
	Tagged hooks
	Tagging ObjectClass instances in LDAPFakerMixin

	Available hooks

	Developer Interface
	Unittest Support
	python-ldap replacements
	LDAP Server like objects
	Hook management
	Type Aliases

	Python Module Index
	Index

